
ECHO DEPOSITORY: OVERVIEW OF SEMANTIC ARCHIVING
RESEARCH

CHAD CURTIS

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN
GRADUATE SCHOOL OF LIBRARY AND INFORMATION SCIENCE

Date: December 2007.
1

Contents

Part 1. BECHAMEL, Digital Repositories, and RDF Databases 4
1. Introduction: Bechamel and ECHO DEPository 4
2. Relevant Projects 5
2.1. Fedora Repository 5
2.2. Kowari Metastore and Mulgara 7
2.3. RDF Database connectors/abstraction layers 8
2.3.1. Trippi 8
2.3.2. Tupelo 8
2.4. SWI-Prolog 9
2.4.1. JPL 10

Part 2. BECHAMEL Implementation 10
3. General Goal 10
3.1. Specific Goals 10
4. Testing Environment 11
4.1. Overview of of OS, Users, and Directories 11
4.2. Overview of Applications and Languages 12
5. Instructions to Replicate Environment 13
5.1. Installation of J2SDk jdk1.5.0 12 13
5.2. Installation of Kowari 1.0.5 13
5.3. Installation of SWI-Prolog 5.6.37 13
5.4. Installation of KowariClient.java 14
5.5. Installation of PostgresSQL 14
5.6. Installation of Fedora Commons 15
5.7. Ingest demos 16
5.8. Editing of .bash profile and .bashrc 18
6. Instructions to Maintain Environment 19
6.1. Kowari 19
6.2. PostgreSQL 20
6.3. Tomcat 20
6.4. Kowari Client.pl 20
6.5. Fedora Commons 20
7. Technical Issues and Solutions 21
8. Testing/Findings 24
8.1. Non-Root Environment 24
8.2. Solitary Kowari 24
8.3. Embedded Kowari 26
8.4. Remote Kowari and Fedora/Trippi 27
8.5. JPL memory handling 30
9. Glossary 31

2

9.1. BECHAMEL 31
9.2. Fedora Commons 31
9.3. Kowari Metastore 32
9.4. JRDF 32
9.5. N3 (Notation 3) 32
9.6. N-Triples 32
9.7. RDF 32
9.8. SWI-Prolog 33
9.9. Trippi 33
9.10. Tupelo 33
References 33

3

Part 1. BECHAMEL, Digital Repositories, and RDF Databases

1. Introduction: Bechamel and ECHO DEPository

The ECHO DEPository at the Graduate School of Library and Information
Science is a test environment for proof of concept of a BECHAMEL application
that is able to access and modify the RDF metadata of a Fedora Commons digital
object in order to form inferences with ontologies. The justification for the need
of a formal BECHAMEL application has been explored in Renear et al. (2002),
Sperberg-McQueen et al. (2002), Renear et al. (2003), Dubin et al. (2003), Dubin
(2003), and Dubin & Birnbaum (2004). One should refer to these documents, but
a more succinct description of current goals of BECHAMEL was recently presented
by David Dubin:

The BECHAMEL system is a knowledge representation and in-
ference environment, originally created for automated interpreta-
tion of conventional markup languages. Written in Prolog, the sys-
tem provides predicates for processing the syntactic structures that
emerge from an SGML/XML parser, defining object classes, instan-
tiating objects, assigning values to properties, and establishing re-
lationships between or among object instances. BECHAMEL uses
Prolog’s built-in capabilities to derive inferences from these facts.
BECHAMEL emerged from the joint work of researchers at the Uni-
versity of Illinois, the University of Bergen, and the Worldwide Web
Consortium to create a knowledge-based workbench on which precise
theories of the semantics of document markup could be expressed
and tested. Recent improvements to BECHAMEL include a change
from its native Prolog-based knowledge structures to an RDF basis.
BECHAMEL can process a subset of the OWL ontology language,
compute inferences over a collection of RDF triples, and express the
new facts that it discovers using RDF. Ongoing development work
includes interfaces for interrogating and updating a remote RDF
database and processing RDF descriptions that are retrieved over
the web.

We propose a deductive system for reasoning about digital re-
sources, their properties, and the machine-readable descriptions that
imperfectly express those properties. The idea is not to automat-
ically discover missing semantic information or correct malformed
records, but to call human attention to descriptions that are anoma-
lous, incomplete, or suspicious. Such a system will reason over a
large knowledge base of simple assertions about digital resources.
Alerts will be triggered by such anomalies as:
1. A property value assertion, where the identity of the property
taking the value cannot be deduced.

4

2. A property value assertion, where the identity of the resource
exhibiting the property cannot be deduced.
3. Deduction that a stream or file exists without a pointer to locate
it.
4. Ascription of a property to an instance of an inappropriate class
(e.g., MIME classification to a bit sequence, rather than to the re-
source expressed by the bit sequence).
5. Apparently contradictory assertions (e.g., a resource that is both
a word processor document and an executable application).
Dubin (2007)

Due to inadequacies in proposed metadata preservation models and unreliable
human implementation of metadata standards a formal framework is needed. Du-
bin states three problems with standard metadata encoding technologies:

1. Preservation metadata formats typically overload a simple syntax
with multiple competing semantic interpretations. Typical exam-
ples include XML applications where a small number of syntactic
relationships (e.g., the parent/child relationship between elements)
represents any number of semantic relationships (whole/part, prop-
erty name/value, etc.) that are context dependent. Often a precise
interpretation (in formal rather than natural language) of these se-
mantics can be found only in the execution of application software
that consumes the file (and, presumably, in the mind of the pro-
grammer who wrote the application).

2. Metadata descriptions of digital resources typically confound dif-
ferent levels of abstraction, making it difficult to verify precisely
what properties and relationships are being asserted. For example,
a single description of a digital image may include assertions about
the image itself (e.g., its height and width in centimeters), the im-
age content (e.g., that it depicts a specific person), and the file that
encodes the image (e.g., its size in bytes).

3. The information in resource descriptions may only be incom-
pletely available for machine processing and verification. Crucial
contextual data may exist only as natural language annotations or
as unstructured information in the content of metadata fields.
Dubin (2007)

At the 2007 ALISE Annual Conference Dubin presented a poster session, which
contains Figure 1, a visual summary of issues at play:

5

What’s Wrong with this Metadata?
<dublin_core>

 <dcvalue element="contributor" qualifier="none">Scanning, indexing, and description sponsored by the

 Illinois State Library and the University of Illinois at Urbana-Champaign Library. Geo-referencing

 sponsored and performed by the Geographic Modeling Systems Laboratory, University of Illinois at

 Urbana-Champaign.</dcvalue>

 <dcvalue element="contributor" qualifier="author">United States. Agricultural Adjustment Agency.</dcvalue>

 <dcvalue element="contributor" qualifier="author">Aerial Photographs</dcvalue>

 <dcvalue element="date" qualifier="none">Created: 1938-07-12</dcvalue>

 <dcvalue element="date" qualifier="none">Issued: 1938-01-01</dcvalue>

 <dcvalue element="date" qualifier="none">Scanned and Processed: 1998-06-01</dcvalue>

 <dcvalue element="date" qualifier="accessioned">2005-09-19T18:25:36Z</dcvalue>

 <dcvalue element="date" qualifier="available">2005-09-19T18:25:36Z</dcvalue>

 <dcvalue element="date" qualifier="issued">2005-09-19T18:25:36Z</dcvalue>

<dcvalue element="format" qualifier="none">image/jpeg</dcvalue>

<dcvalue element="format" qualifier="extent">23179 bytes</dcvalue>

<dcvalue element="format" qualifier="extent">209151 bytes</dcvalue>

<dcvalue element="format" qualifier="mimetype">text/xml</dcvalue>

<dcvalue element="format" qualifier="mimetype">image/jpeg</dcvalue>

<dcvalue element="language" qualifier="iso">en_US</dcvalue>

Date qualifiers in text fields

Creation date follows issue date

What was issued in 1938 and

what was issued in 2005?

who?

What is it that is 23179 bytes and

what is it that is 209151 bytes?
How many jpeg streams?

What is it that is image/jpeg and

what is it that is text/xml?

What is it that is in English?

1. A paper description accompanied

 the original photograph, which had

 been taken in 1938.

2. In 1998 the photograph was scanned

 for inclusion in an image database.

 A metadata record for the photograph

 was entered in a relational database.

 The fields were derived from the

 FGDC Geospatial Metadata Standard.

3. In May 2005 an OAI 2.0 metadata

 record was derived via a mapping

 from the database fields into DC.

4. Months later the OAI record was

 transformed via XSLT for ingestion

 into a DSpace installation.

5. When the record was exported from

 DSpace, additonal DC statements

 were automatically added.

Provenance

1. Records like this one result from many

 transactions, separated in time.

2. Many people contribute, and they’re

 not all able to consult with each other.

3. The distinctions that get muddled

 require inferences that human minds

 make without conscious effort.

4. Natural language annotations may

 resolve the ambiguities.

5. But without machine-readable

 expressions for validation and

 constraint enforcement, each

 transformation compunds the errors.

Preservation Risks

Figure 1. A visual representation of what can go wrong with metadata.

6

2. Relevant Projects

2.1. Fedora Repository. Currently Fedora Commons is positioned as a non-
profit organization contributing to a new knowledge paradigm:

Fedora Commons will embrace the dual focus of enabling the cre-
ation of innovative, collaborative information spaces and attending
to the longevity and integrity of information that results from col-
laboration. In doing so, it will work to ensure that change is both
revolutionary and sustainable. Fedora Commons builds on the foun-
dation of the highly successful and internationally recognized Fedora
Project. Payette (2007)

Fedora Commons expanded from the initial digital repository software: Flexible
Extensible Digital Object Repository Architecture (FEDORA). Fedora started
development at Cornell University in 1997 and although development has spread
out, project administration is based out of Cornell University and the University
of Virginia. The Fedora White Paper, Fedora Development Team (2005), lists
many features that make it ideal for digital object management and preservation: a
powerful digital object model; extensible metadata management; ability to express
inter-object relationships; and OAI-PMH conformance.

Fedora is written in Java and in the past has had three primary web service
APIs: Management, Access, and Search Fedora Commons System Documentation.
The management API is for administration of the repository through creation and
manipulation of digital objects through a SOAP-enabled web service. The Access
API is the primary interface to accessing digital objects. The Search API is the
interface for searching and browsing the repository.

Fedora 2.0 added the Resource Index Search API. The following is a description
of Resource Index Search API from Fedora Commons documentation:

The Resource Index is an RDF-based index of the Fedora repository
that includes the following for each digital object:
1. object-to-object relationships (from the RELS-EXT datastream
of a digital object)
2. custom user-defined properties (from the RELS-EXT datastream
of a digital object)
3. object properties (derived from the FOXML digital object) 4.
metadata about datastreams and disseminations (derived from the
FOXML digital object)
5. Dublin Core metadata (obtained from the default DC datastream
of a digital object)
Fedora Commons System Documentation

The Resource Index Search API is the most relevant API to the BECHAMEL
project, as it provides access to the expression of inter-object relationships, which
is made possible through Kowari Metastore.

7

2.2. Kowari Metastore and Mulgara. Within the RDF database community
there are divisions between developers who think a scalable RDF Datastore can
be a modeled as a relational database and those who think specialized databases
must be developed. David Wood and Paul Singleton from the Kowari and Mulgara
projects believe the latter:

Kowari is an Open Source, massively scalable, transaction-safe, purpose-
built database for the storage and retrieval of metadata.

Much like a relational database, one stores information in Kowari
and retrieves it via a query language. Unlike a relational database,
Kowari is optimized for the storage and retrieval of many short state-
ments (in the form of subject-predicate-object, like ”Kowari is fun”
or ”Kowari imports RDF”). Kowari is not based on a relational
database due to the large numbers of table joins encountered by
relational systems when dealing with metadata. Instead, Kowari
is a completely new database optimized for metadata management.
Kowari MetaStore

Kowari Metastore is the result of opening source from a commercial product
created by Tucana, Tucana Knowledge Server. When Tucana was purchased by
Northrop Grumman disagreements on the future of an open source version of
TKS made developers leave the Kowari branding and produce the fork, Mulgara
Wood (2007). It has been confirmed through correspondence to Chris Wilper that
Mulgara will be used in Fedora Commons 3.0 in place of Kowari. Wilper (2007)

2.3. RDF Database connectors/abstraction layers.

2.3.1. Trippi. The programmatic connector of RDF metadata from the Fedora
digital object to the modified triplestore is Trippi: “a Java library providing a con-
sistent, thread-safe access point for updating and querying a triplestore.” Trippi
Connectors exist for Sesame, Kowari, Oracle Spatial, and MPTStore, but one
can create a connector to other triplestores with the API. The administrator and
lead developer of the project is Chris Wilper, who also plays a large role in the
development of Fedora Commons.

2.3.2. Tupelo. NCSA’s Tupelo is similar to Trippi, but aims to be more a semantic
framework than just a datastore connector:

Tupelo is a Semantic Content Repository framework. It provides
means of storing, retrieving, annotating, and accessing informa-
tion using Semantic Web technologies such as RDF (http://www.
w3.org/RDF/), backed with standard storage technologies such as
filesystems and databases, as well as RDF stores such as Sesame
(http://www.openrdf.org/) and Mulgara (http://www.mulgara.
org/).

8

RDF is a generic metadata framework capable of describing dig-
ital objects, real-world entities, and abstract concepts at multiple
levels of specificity and granularity. Because of its use of global ID’s
(URI’s) and named-link architecture for expressing both relation-
ships and attributes, it provides a very simple means of assembling
composite descriptions from independently-generated parts, a com-
mon issue in distributed data management.

However RDF API’s and technologies have tended to be mono-
lithic, closely tying API’s and query languages to specific storage
architectures. Tupelo solves this problem by providing a common
abstract subsuming RDF descriptions, storage, retrieval, and basic
stream operations, sort of like a JDBC for the semantic web (simi-
lar to Trippi (http://trippi.sourceforge.net/)). In addition to
providing means of interacting with metadata, Tupelo also provides
a uniform means of storing, annotating, and accessing streams in a
variety of heterogeneous storage architectures.

For example, Tupelo can act as a WebDAV client, extract RDF
metadata from WebDAV resources, and copy them into a Sesame
repository with a small set of generic operations. Tupelo can also
aggregate multiple heterogeneous stores, so that a filesystem could
hold stream information, but stream annotations could be stored in
Mulgara. Tupelo

2.4. SWI-Prolog. SWI-Prolog is currently one of the more popular open source
implementations of Prolog. The official website explains the origin of SWI-Prolog:

Better interaction between XPCE and Prolog required a powerful bi-
directional interface between Prolog and C which was not provided
by any Prolog system back then. Some rainy sundays triggered the
birth of SWI-Prolog. At some stage this tiny system became big
enough to (barely) run the Shelley Knowledge Engineering Work-
bench under development. In some aspects it was much better than
Quintus thanks to its more flexible C interface, much faster compiler
and make facility for quickly re-loading of modified files.

Probably the best move was to promise a bottle of cognac for any-
one finding ten bugs. There is no better way to make a system more
popular, even if it has a few bugs! SWI-Prolog was born and would
remain the central piece of the home-brew Software Infrastructure
at HCS/SWI.

In use with a growing number of projects, HCS/SWI decided to
distribute SWI-Prolog at no charge using the emerging file-exchange
through direct ftp-connections. It was distributed free for personal

9

and academic usage as well as in combination with the non-free PCE
environment for academic and commercial usage.

Over the years, the (X)PCE and SWI-Prolog development was
guided by the needs of our own applications as well as requirements
from external users. PCE became XPCE after porting to X11 and
turning it into a full-blown object-extension to Prolog. At a later
stage MS-Windows was added to the supported platforms, provid-
ing a cross-platform GUI development toolkit. Growing applications
made SWI-Prolog loose most of its limitations. Garbage collection
and last-call optimisation was added to deal with memory-hungry
applications. Atom-garbage collection and exception-handling was
added to facilitate 24x7 running servers. Recent development in-
clude network (TCP/IP, CGI, HTTP), HTML/XML/SGML and
RDF facilities, UNICODE support as well as constraint handling
(CHR, clp(R) together with Tom Schrijvers from the University of
Leuven). SWI-Prolog

2.4.1. JPL. The Java-Prolog Language package is now included in standard SWI-
Prolog packages and binaries. JPL enables “Prolog applications to exploit any
Java classes, instances, methods etc. (without requiring any wrappers, metadata
etc. to be set up first)” and “Java applications to manipulate any Standard Prolog
libraries, predicates, etc.” JPL. More specifically:

JPL is a set of Java classes and C functions providing an inter-
face between Java and Prolog. JPL uses the Java Native Interface
(JNI) to connect to a Prolog engine through the Prolog Foreign Lan-
guage Interface (FLI), which is more or less in the process of being
standardized in various implementations of Prolog. JPL is not a
pure Java implementation of Prolog; it makes extensive use of na-
tive implementations of Prolog on supported platforms. The current
version of JPL only works with SWI-Prolog. JPL

Part 2. BECHAMEL Implementation

3. General Goal

Maintain a Linux environment, including documentation, with the goal to sup-
port the research in semantic archiving conducted by David Dubin. The installa-
tion environment needs to be reproducible, by a non-root user, with the primary
aide of the provided documentation.

3.1. Specific Goals. (taken from Janet Eke, ”semantic archive notes may2007.rtf”)

10

B.1.1. Get Prolog to work with Kowari: build Prolog app using JPL that allows
other Prolog apps to modify and inspect contents of a Kowari repos using ITQL
queries

B.1.2. BECH to RDF: enhancing BECH to work with RDF and thus with
Kowari

B.1.3. Prolog to Tupelo: develop Prolog interface to Tupelo APIs with aim to
provide generalized access to RDF databases, including but not limited to Kowari

B.1.4.1 BECH to Tupelo: (here BECH takes advantage of above); develop capac-
ity to store BECHAMEL-generated knowledge persistently in Kowari and retrieve
for BECHAMEL using Prolog

B.1.4.2.BECH to Tupelo: implement Prolog/Tupelo interface (B.1.3.) for
BECHAMEL

Bechamel

Tupelo

Tomcat

SWI-Prolog

Java

Kowari/Mulgara
solitary instance

Tupelo-Mulgara
 connector

 Prolog-
Kowari/Mulgara

API (JPL)
socket

communication

ECHOdep2

Kowari/Mulgara
embedded

Trippi

Tomcat

Fedora Commons

 Kowari/Mulgara
 Trippi connector

Figure 2. The system as implemented on the GSLIS ECHO DEPository

4. Testing Environment

This is a compilation of separate text files, which contain more details, but are
less user-friendly. The directory containing the ECHO-DEP text files, including

11

this document, can be found on the ’echodep2’ server: /content/echodep/doc. Ini-
tial testing was done on echodep1, see main doc echodep1.pdf. Many of the latter
text files refer to echodep1 directories, so this should be used as the primary source
for echodep2.

4.1. Overview of of OS, Users, and Directories. Echodep2 (http://echodep2.
lis.uiuc.edu:8086) is running Debian Etch 4.1.1-21. All software is installed un-
der user, ’ccurtis3’ and group ’echodep’. For the most part, the only assistance
of a system administrator is needed for the creation of a user for PostgresSQL.
GLSIS system administrator Brynnen Owen was contacted to create the user after
supplying user name, home directory location, and password.

Directories created in /content/echodep/, not including folders created during
application installation:
/doc: Documentation
/source: Compressed and uncompressed source code.
/users: Created to contain the home directory for user ’postgres’
/chad files: misc. working scripts and notes

4.2. Overview of Applications and Languages. Complete list of applica-
tions installed and absolute paths for binaries of interest, as user ’ccurtis3,’ group
’echodep,’ in the directory, /content/echodep/. In cases where multiple versions
are used, the paths are stacked:

Apache Ant = /content/echodep/apache-ant-1.7.0/bin/ant

Maven = /content/echodep/maven-2.0.7/bin/mvn

Apache Web Server = /content/echodep/httpd_2.2.6/bin/httpd

SWI-Prolog = /content/echodep/prolog5.6.37/lib/pl-5.6.37/

bin/x86_64-linux/pl

Java Dev Kit = /content/echodep/jdk1.5.0_12/bin/java

/content/echodep/j2sdk1.4.2_15/bin

Kowari = /content/echodep/kowari-1.0.5/dist/kowari-1.0.5.jar

/content/echodep/kowari-1.0.5/dist/kowari-1.0.5.jar

/content/echodep/kowari-1.1.0-pre2/dist/kowari-1.1.0.jar

Mulgara = /content/echodep/mulgara_1.1.0/dist/mulgara-1.1.0.jar

PostgresSQL = /content/echodep/pgsql/bin/pgsql
12

Fedora Commons = /content/echodep/fedora-2.2.1/

/content/echodep/apache-tomcat-5.5.23/webapps/fedora

Apache Tomcat = /content/echodep/apache-tomcat-5.5.23/bin/startup.sh

/content/echodep/jakarta-tomcat-5.0.28/bin/startup.sh

Tupelo = /content/echodep/t2/

5. Instructions to Replicate Environment

To create an environment limited to non-root users the following was used: user
’ccurtis3’ in group ’echodep’ ccurtis3 has read, write, and execute permissions to
/content/echodep/. Only applications and languages directly involved in installing
software and managing applications were installed. Otherwise existing binaries
(make, etc.) installed by root were used.

5.1. Installation of J2SDk jdk1.5.0 12. This is the simplest install due to it
being a binary file. Agree to the license agreement and you’re done.

wget -O jdk-1_5_0_12-linux-amd64.bin http://192.18.108.239/ECom/

EComTicketServlet/BEGIND4C23EDCA5BA6553AB880D7B9B7038EA/

-2147483648/2248771647/1/832394/832358/2248771647/2ts+/

westCoastFSEND/jdk-1.5.0_12-oth-JPR/jdk-1.5.0_12-oth-JPR:15/

jdk-1_5_0_12-linux-amd64.bin

gserve102:source 507 \$ chmod +x jdk-1_5_0_12-linux-amd64.bin

gserve102:source 508 \$./jdk-1_5_0_12-linux-amd64.bin

j2sdk1.4.2_15:

wget -O j2sdk-1_4_2_15-linux-i586.bin http://192.18.108.146/ECom/

EComTicketServlet/BEGIN628C6744AB66DB130618BE0CFA2CED43/

-2147483648/2329856739/1/837230/837110/2329856739/2ts+/

westCoastFSEND/j2sdk-1.4.2_15-oth-JPR/j2sdk-1.4.2_15-oth-JPR:4/

j2sdk-1_4_2_15-linux-i586.bin

chmod +x j2sdk-1_4_2_15-linux-i586.bin

./j2sdk-1_4_2_15-linux-i586.bin

5.2. Installation of Kowari 1.0.5.

mv ./kowari-1.0.5.tgz /content/echodep/kowari-1.0.5.tgz

tar -zxvf kowari-1.0.5.tgz

cd kowari-1.0.5
13

./build.sh dist

5.3. Installation of SWI-Prolog 5.6.37.

cd /content/echodep/source

tar -zxvf pl-5.6.37.tar.gz

cd pl-5.6.37/src

./configure --prefix=/content/echodep/prolog_5.6.34 --enable-mt

make

make install

To install JPL package:

cd pl-5.6.34/packages

./configure

make

make install

jpl.jar must be found by any Java VMs (and compilers) used with JPL; one
possibility is to put it on your global CLASSPATH Please add directory holding
libjvm.so to $LD LIBRARY PATH

Additional JPL instructions can be found at: http://www.swi-prolog.org/

packages/jpl/installation.html

5.4. Installation of KowariClient.java. If KowariClient.java must be edited
(example: RMIs):

On line 109:

String modelURI = "rmi://128.174.154.103.lis.uiuc.edu/server1/#sampledata";

String query = "select $s $p $o from <"+modelURI+"> where $s $p $o ;";

On line 178:

String modelURI = "rmi://128.174.154.103.lis.uiuc.edu/server1/#sampledata";

String query = "select $s $p $o from <"+modelURI+"> where $s $p $o ;";

Then compile the java source:

javac KowariClient.java

jk.jar supplied by NCSA can be uncompressed and the new compiled file, Kowar-
iClient.class, replaces the existing version of the file. A new version of jk.jar can
formed with the new class and the two existing files from the initial jk.jar:

jar cf jk.jar KowariClient.class META-INF readOwl.class

5.5. Installation of PostgresSQL. A user needs to be created to install Post-
gresSQL. I contacted the System Administrator Brynnen Owen and he created the
user after I gave him the user name, home directory location, and password.
username =
home = /content/echodep/users/postgres

14

password = [password]

tar -zxvf postgresql-8.2.4.tar.gz

./configure --prefix=/content/echodep/pgsql --enable-debug

make

make install

su - postgres

/content/echodep/pgsql/bin/initdb -D /content/echodep/pgsql/data

/content/echodep/pgsql/bin/postgres -D /content/echodep/pgsql

/data >logfile 2>&1 &

/content/echodep/pgsql/bin/createdb test

/content/echodep/pgsql/bin/psql test

Success. You can now start the database server using:

/content/echodep/pgsql/bin/postgres -D /content/echodep/pgsql/data

or

/content/echodep/pgsql/bin/pg_ctl -D /content/echodep/pgsql

/data -l logfile start

I actually use:

/content/echodep/pgsql/bin/pg_ctl -D /content/echodep/pgsql/data

-l postgres.log start

/content/echodep/pgsql/bin/pg_ctl -D /content/echodep/pgsql/data

-l postgres.log stop

Postgresql.config must now be edited (change ports, etc.).
To overcome non-root installation and the fact that I could not chown the di-

rectory, data, after creating it I did the following:
As ccurtis3 I issued the following command:

chmod o+w pgsql

This gave write permission the the directory pgsql.
I issued the command to log in as the user ’postgres’:

su postgre

As postgres I issued the command:

mkdir /content/echodep/pgsql/data

I logged back in as ccurtis3:

su ccurtis3

I then removed write access from ’others’:

chmod o-w pgsql

My final result is the same as:
15

root$ mkdir /content/echodep/pgsql/data

root$ chown postgres /content/echodep/pgsql/data

Lastly, /content/echodep/pgsql must be added to the .bashrc PATH

5.6. Installation of Fedora Commons. Installation of Fedora Commons 2.2.1,
adapted from official Fedora Commons documentation:

Step 1: Prepare Environment Variables
The following environment variables must be correctly defined: JAVA HOME
This should point to the base directory of your Java installation. For UNIX

derivatives, this might be something like /usr/local/java-1.5.0-sun FEDORA HOME
This is the directory where Fedora will be installed, for example, /usr/local/fe-

dora.
Step 2: PATH
This must include the Java and Fedora bin directories. For UNIX deriva-

tives, this will be $FEDORA HOME/server/bin, $FEDORA HOME/client/bin
and usually $JAVA HOME/bin.

If you will be building from source, Ant should also also be on your path.
JAVA OPTS

If Fedora is configured to use SSL, JAVA OPTS must include the javax.net.ssl.trustStore
and javax.net.ssl.trustStorePassword properties. See the SSL section below for
more information. CATALINA HOME

If Fedora is configured to use Tomcat, CATALINA HOME must be set before
starting Fedora. If using the quick install option, CATALINA HOME should be
set to $FEDORA HOME/tomcat (or %FEDORA HOME%
tomcat in Windows).

Configure Fedora Commons to work with PostgresSQL installation:
Please consult the documentation at http://www.postgresql.org/docs/ for

more detailed information about configuring PostgreSQL.
Launch the PostgreSQL interactive terminal, psql, (optionally appending the -U

argument to connect as a different user). psql -d postgres
To create a user ’fedoraAdmin’ with password ’fedoraAdmin’ and database

named ’fedora22’, enter the following:

CREATE ROLE "fedoraAdmin" LOGIN PASSWORD ’fedoraAdmin’; CREATE DATABASE

"fedora22" WITH ENCODING=’UTF8’ OWNER="fedoraAdmin";

Run the Fedora Commons installation jar:

echodep2:/content/echodep/source 540 \$ java -jar fedora-2.2.1-installer.jar

I performed a custom install to point to PostgreSQL and“existingTomcat”

5.7. Ingest demos.

echodep2:/content/echodep/fedora-2.2.1/client/bin 581$

sh fedora-ingest-demos.sh echodep2.lis.uiuc.edu 8080 fedoraAdmin

[password] http
16

Starting Fedora DemoIngester...

Ingesting Demonstration Objects...

SUCCESS: All 33 objects were ingested.

A detailed log is at /content/echodep/fedora-2.2.1/client/logs/

ingest-from-dir-1187192238003.xml

SUCCESS: All 9 objects were ingested.

A detailed log is at /content/echodep/fedora-2.2.1/client/logs/

ingest-from-dir-1187192254472.xml

Finished.

Demos can be viewed at: http://echodep2.lis.uiuc.edu:8080/fedora/get/
demo:5 Search service is at at: http://echodep2.lis.uiuc.edu:8080/fedora/

search

In Fedora Commons 2.2.1 installer the Resource Index (Kowari is the default)
is turned off by default. I edited fedora.fcfg to set the Resource Index level at 2:

<module role="fedora.server.resourceIndex.ResourceIndex"

class="fedora.server.resourceIndex.ResourceIndexModule">

<comment>Supports the ResourceIndex.</comment>

<param name="level" value="2">

<comment>(required)

Index level. Currently, only 0, 1 and 2 are supported

levels. 0 = off: do not load the ResourceIndex 1 = basic: system

metadata, RELS-EXT, disseminations 2 = basic + method permutations

WARNING: changing the level (except to 0) requires

running the Resource Index Rebuilder.</comment>

</param>

From Fedora Commons 2.2.1 documentation:

* level
Sets the operating level of the Resource Index. 0 Off: the Resource
Index will not load at server startup.
1 On: the Resource Index will index system properties, inter & intra-
object relationships, and user-defined relationships.
2 Same as 1, but adds indexing of parameterized methods, where
the parameters have a finite domain (e.g., the method getImage
with parameter size, whose domain is small, large). Because calcu-
lating method parameters may result in a combinatorial explosion
of statements in the Resource Index (depending on the design of

17

a particular repository’s Behavior Definition Objects), this level of
indexing must be explicitly set.
* datastore
The id of the datastore to use with the Resource Index. The refer-
enced datastore must assert a connectorClassName parameter with
a valid Trippi Connector class.
* syncUpdates
Whether to flush the triple buffer before returning from object modi-
fication operations. This defaults to false. Specifying this as true will
ensure that RI queries immediately reflect the latest triples. Speci-
fying false will not provide this guarantee, but can reduce roundtrip
time for API-M operations (especially when using Kowari).
Fedora Commons offical website

I then had to run the Resource Index Rebuilder:
I stopped Fedora by stopping Tomcat:

$CATALINA_HOME/bin/shutdown.sh

I then continued by using the rebuild binary in the Fedora Commons /server
directory:

echodep2:/content/echodep/fedora-2.2.1/server/bin 515 $ ls

fedora-rebuild.bat fedora-reload-policies.bat validate-policy.bat

fedora-rebuild.sh fedora-reload-policies.sh validate-policy.sh

echodep2:/content/echodep/fedora-2.2.1/server/bin 516 $

sh fedora-rebuild.sh

I then restarted Tomcat:

$CATALINA_HOME/bin/startup.sh

The Fedora Resource Index Search interface is available at: http://echodep2.
lis.uiuc.edu:8080/fedora/risearch

Fedora Commons 2.2.1 can be remotely administered through the use of the
shell script:

$FEDORA_HOME/client/bin/fedora-admin.sh

5.8. Editing of .bash profile and .bashrc. In order for the installed applica-
tions to be correctly called at BASH two files in the home directory of ’ccurtis3’and
’postgres’: .bash profile and .bashrc:

export KOWARI_HOME=/content/echodep/kowari-1.0.5

export JAVA_HOME=/content/echodep/jdk1.5.0_12

export JAVADOC=/content/echodep/jdk1.5.0_12/bin

export JRE_HOME=/content/echodep/jdk1.5.0_12/jre

export JAVA_VM=/content/echodep/jdk1.5.0_12/jre/bin

export JAVAC=/content/echodep/jdk1.5.0_12/bin/javac

export FEDORA_HOME=/content/echodep/fedora-2.2.1
18

export CATALINA_HOME=/content/echodep/apache-tomcat-5.5.23

export TERM=xterm

export PATH=${FEDORA_HOME}/bin:/content/echodep/pgsql/bin:${JAVA_HOME}/bin:

${JAVA_VM}:${JRE_HOME}:/content/echodep/prolog5.6.37/bin:/usr/local/bin:

/usr/bin:/bin

export CLASSPATH=/content/echodep/chad_files/dev/java_dev/echodep/classes:

${JAVAC}:${KOWARI_HOME}:/content/echodep/dev/java_dev/echodep/classes

:${JRE_HOME}/lib/jpl.jar:${KOWARI_HOME}/dist/driver-1.0.5.jar:

${JAVA_HOME}/lib/jpl.jar:${KOWARI_HOME}/dist/jk.jar

:${KOWARI_HOME}/dist/kowari-1.0.5.jar:

${KOWARI_HOME}/dist/client-jena-base-1.0.5.jar:

${KOWARI_HOME}/lib/saaj-1.1.jar:${KOWARI_HOME}/lib/log4j-1.2.8.jar:

${KOWARI_HOME}/lib/emory-util.jar:${JAVA_HOME}/lib/tools.jar:

${KOWARI_HOME}/dist/itql-1.0.5.jar:${KOWARI_HOME}/lib/apache-soap-2.2.jar:

${KOWARI_HOME}/lib//jrdf-0.3.3.jar:${KOWARI_HOME}/lib/jargs-0.2.jar:

usr/local/encap/ccurtis3_install/kowari-1.0.5/conf:${KOWARI_HOME}/dist/:.

export LD_LIBRARY_PATH=${JRE_HOME}/lib/amd64:${JRE_HOME}/lib/amd64/server

6. Instructions to Maintain Environment

List all processes:

$ ps axu

Kill process:

$ kill [PID]

Port overview:
8080 Tomcat 5.5, Fedora
8081 RMI Server for Kowari 1.0.5
8082 Kowari 1.0.5
8083 Postgres
8084 Mulgara
8085 RMI server for Mulgara
8086 Apache
1099 Fedora/Kowari RMI server

6.1. Kowari. Kowari uses port 8082
Start server:

cd /content/echodep/kowari-1.0.5/dist

java -jar kowari-1.0.5.jar -p 8082 &
19

(One usually can add the space and ampersand ’&’ at the end of a command
to run a process in the background. This was not working for Kowari, so I issued
the following command in order to keep the Kowari up after logging out:

$ nohup java -jar kowari-1.0.5.jar -p 8082 &

Start ITQL console through X11 server:

in Apple X11.app: ssh -X -Y ccurtis3@echodep2.lis.uiuc.edu

$ cd /content/echodep/kowari-1.0.5/dist

$ java -jar itql-1.0.5.jar

OR
Use Kowari Viewer, an HTTP interface: http://echodep2.lis.uiuc.edu:

8082/webui/GetViewerScreen.event

6.2. PostgreSQL. PostgreSQL must be run as user ’postgres’ It uses port 8081.

/content/echodep/pgsql/bin/pg_ctl -D /content/echodep/pgsql/data

-l postgres.log start

/content/echodep/pgsql/bin/pg_ctl -D /content/echodep/pgsql/data

-l postgres.log stop

6.3. Tomcat. must be run as ccurtis3 uses port 8080

$CATALINA_HOME/bin/startup.sh

$CATALINA_HOME/bin/shutdown.sh

6.4. Kowari Client.pl. See

kowari_answer([],R).

create <rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>;

load <http://www.arches.uga.edu/\~vstaub/GlobalInfoSys/project/ontology/

Could_have_been.rdf> into

<rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>;

kowari([],R).

select $subject $predicate $object from

<rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>

where $subject $predicate $object;

drop <rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>;

20

6.5. Fedora Commons. Fedora Remote Graphical Administration
Fedora Core has several graphical administration applications, such as system-

config-users, system-config-time, and system-config-services. In order to forward
these applications over an ssh connection, you must use the -Y flag. The -Y enables
trusted X11 forwarding over ssh.

Terminal.app is fine, provided the DISPLAY variable is set in the environment
appropriately (try 127.0.0.1:0.0 for default install), before you do ssh -X

Add to .profile:

export DISPLAY=:0.0

in Apple Tiger X11.app:

ssh -X -Y ccurtis3@echodep2.lis.uiuc.edu

$ cd /content/echodep/fedora-2.2.1/client/bin

$ sh fedora-admin.sh

X11.app doesn’t even need to be open until you wish to launch an X11 applica-
tion on your fedora box. Then it’ll need to be open - great if you like Terminal.app
more than xterm. (This is all under OSX 10.4.x Leopard 10.5 changed the X11
code-base, so this may differ in the future)

On Linux use xhost +
The Fedora Resource Index Search interface is available at: http://echodep2.

lis.uiuc.edu:8080/fedora/risearch

7. Technical Issues and Solutions

(1) Lack of Root Access: I was restricted to having rwx access to /usr/local/en-
cap. This made installation more difficult.

Solution: (1) restricting installation into /usr/local/encap/ccurtis3 install and
duplicating applications only when necessary, e.g. Java. (2) edit .bash profile and
.bashrc in home directory (/homea/ccurtis3) to include the paths to each binary.

(2) JPL make errors: The make file for JPL would not form correctly.
Solution: I edited the following lines in the make file located in /usr/local/en-

cap/ccurtis3 install/source/pl-5.6.34/packages/jpl/src/java/Makefile:

####/content/echodep/source/pl-5.6.37/packages/jpl/src/java####

JAVAC=/usr/local/encap/ccurtis3_install/j2sdk1.4.2_14/bin/javac

JAR=jar

JUNIT=/usr/share/java/junit.jar

JAVADOC=/usr/local/encap/ccurtis3_install/j2sdk1.4.2_14/bin/javadoc

(3) Kowari Gmake error: I installed Java 1.6.0 for my installation environment.
But through failed installation attempts I found out that Kowari will not build on
Java later 1.4.2. Development for Kowari stopped in 2006 and a fork, Mulgara,
took on development. I confirmed the fact through the Kowari mailing list which

21

unresolvable Problems with Java post-1.4.x caused the Kowari development team
to stick to 1.4.2:

Re: [Kowari-developers] building problems From: Paul Gearon ¡gearon@ie...¿
- 2006-06-21 16:06 Hi Alessandro,

On 6/21/06, Alessandro Di Bella ¡aldib@fu...¿ wrote: Hi, I tried
to build the CVS HEAD for kowari 1.1 and 1.2 and I encountered
the following few problems. I’ll detailed below:

Kowari doesn’t support Java 1.5. It won’t compile. This has been
well known for some time. Unfortunately, I note that the README
file says: Note. You must use J2SE 1.4.2 or above for compiling and
running Kowari. Obviously this was written before 1.5 came out.
The problem is that the modifications which make Kowari work on
Java 1.5 also break it on Java 1.4. The decision was made some time
ago to keep 1.4 compatibility.

Solution: Install an older version of Java (1.4.x) and try to maintain the rest of
the environment on the same version. I kept Java 1.6.0 installed for later use.

(4) SWI-Prolog JPL segfaults: The following appears when JPL is called:

ERROR: (/usr/local/encap/ccurtis3_install/prolog_5.6.34/lib/pl-5.6.34/

library/jpl.pl:3733):

read_clause/2: Caught signal 11 (segv)

ERROR: (/usr/local/encap/ccurtis3_install/prolog_5.6.34/lib/pl-5.6.34/

library/jpl.pl:4119):

read_clause/2: Caught signal 11 (segv)

Solution: It is apparently common right now and there has not been a resolution
on the mailing-lists.

Regarding the ”Caught signal 11 (segv)” error: segmentation fault - An error in
which a running program attempts to access memory not allocated to it and core
dumps with a segmentation violation error. This is often caused by improper usage
of pointers in the source code, dereferencing a null pointer, or (in C) inadvertently
using a non-pointer variable as a pointer.

(5) Incorrect Java parameters: The following describes the problem with running
kowari.pl:

kowari(Query,Result) :- /* relation between iTQL query and result */

jpl_new(’KowariClient’, [], F),

jpl_call(F, executeQuery, Query, Answer),

consume_answer(Answer,Result).

kowari(Q,R) The kowari method uses two arguments: the Query variable (bound
to an iTQL query string), and the unbound variable Result. The kowari method
produces Result, a table form of a Kowari answer.

22

jpl new(+Class,+Params,-Ref) jpl new creates an instance of the java class,
KowariClient, which is set in the CLASSPATH, a list of actual parameters for the
constructor, which is empty here, which binds F to a new object reference.

jpl call(+Ref, +Method, +Params, -Result) jpl call calls the executeQuery
method of the object to which F refers (KowariClienbt class), effectively passing
it the Java value (Query variable).

consume answer(Answer,Result)
This predicate continues the process to the next method.
I cannot get to that method due to the error when using example1(R). and

example2(R).:

jpl_call/4: Type error: ‘method_params’ expected, found

‘select $sampledata subquery(select $prevn ’1’ from

<rmi://gserve102.lis.uiuc.edu/server1\#sampledata>

where walk($sampledata <http://sampledata\#prev> $o and $s

<http://sampledata\#prev> $prevn) and $prevn

<http://sampledata\#terms> ’1’) from

<rmi://gserve102.lis.uiuc.edu/server1\#sampledata>

where $sampledata $p $o;’ (3rd arg must be a proper list

of actual parameters for the named method)

In other words, kowari.pl wants a proper list for the Query variable, while the
executeQuery method, in the Java class KowariClient, requires a string. If the
diagnosis is correct there needs to be a ’list to string’ conversion somewhere. I
thought about the Prolog predicate, string to list(String, List), but with a modified
kowari.pl with the mentioned predicate I get an error: (not all actual parameters
are convertible to Java values or references).

Solution: Joe Futrelle experienced the same error and revised the code.

(6) log4 errors:

kowari(Query,Result) :-

jpl_new(’edu.uiuc.kowari_client.KowariClient’, [], F),

jpl_call(F, executeQuery, [Query], Answer),

consume_answer(Answer,Result).

Executing ’select $s $p $o from <rmi://gserve102.lis.uiuc.edu/

server1\#sampledata> where $s $p $o;’

log4j:WARN No appenders could be found for logger

(org.kowari.itql.ItqlInterpreter).

log4j:WARN Please initialize the log4j system properly.

ERROR: jpl_call/4: Type error: ‘method_params’ expected,

found ‘[2]’ (not all actual parameters are convertible

to Java values or references)

Exception: (13) consume_column
23

(@’J\#00000000000137080236’, 2, _G2181) ?

Due to the low priority of the logging error for the ItqlInterpreter this error was
not resolved. Superficial analysis implies the wrong file/directory is being pointed
at.

<TucanaConfig>

<!-- Paths to external component configuration, relative to JAR file -->

<ExternalConfigPaths>

<TucanaLogging>conf/log4j-kowari.xml</TucanaLogging>

<WebDefault>conf/webdefault.xml</WebDefault>

</ExternalConfigPaths>

8. Testing/Findings

8.1. Non-Root Environment. It is completely feasible to create a functional
non-root environment for testing research software in semantic archiving. Due
to an ever increasing awareness of security vulnerabilities of systems, it is highly
probable that further projects will have students and faculty who do not have
root access or have requests denied by system administrators. Therefore it is vital
to be able to perform tasks under limited permission. The documentation of the
testing environment at the Graduate School of Library and Information Science
demonstrates the feasibility and reproducibility of such an environment.

8.2. Solitary Kowari. Through the contribution of the Tupelo project, a BECHAMEL
application can issue iTQL queries to a solitary Kowari instance. The KowariClient
written in SWI-Prolog, using the JPL package, can call methods from a Java class
that uses the ItqlInterperter.

The methods mirror iTQL query actions:
Create model
Load RDF into model
Query Model
Dump RDF out of model
Delete model

The following is an example of a session with output:

echodep2:/content/echodep/chad_files/kowari_pl_fix_20070723 503 $ pl

% /homea/ccurtis3/.plrc compiled 0.00 sec, 264 bytes

Welcome to SWI-Prolog (Multi-threaded, Version 5.6.37)

Copyright (c) 1990-2007 University of Amsterdam.
24

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [kowari].

% kowari compiled 0.00 sec, 8,672 bytes

Yes

?- kowari_answer(’create <rmi://128.174.154.103.lis.uiuc.edu:

8081/server1#semweb>;’,R).

Executing ’create <rmi://128.174.154.103.lis.uiuc.edu:

8081/server1#semweb>;’

log4j:WARN No appenders could be found for logger

(org.kowari.itql.ItqlInterpreter).

log4j:WARN Please initialize the log4j system properly.

R = @null

Yes

?- kowari_answer(’load <http://www.arches.uga.edu/\~vstaub/

GlobalInfoSys/project/ontology/Could_have_been.rdf>

into <rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>;’,R).

Executing ’load <http://www.arches.uga.edu/\~vstaub/

GlobalInfoSys/project/ontology/Could_have_been.rdf>

into <rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>;’

R = @null

Yes

?- kowari(’select $subject $predicate $object

from <rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>

where $subject $predicate $object;’,R).

Executing ’select $subject $predicate $object from

<rmi://128.174.154.103.lis.uiuc.edu:8081/server1#semweb>

where $subject $predicate $object;’

R = [[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10059’,

’http://ainge.cs.uga.edu/gis/publications#author_Name’, shahLink],

[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10059’,

’http://www.w3.org/TR/1999/PR-rdf-schema-19990303#label’, shahLink],

25

[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10059’,

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,

’http://ainge.cs.uga.edu/gis/publications#Author_Link’],

[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10058’,

’http://ainge.cs.uga.edu/gis/publications#has_downloads’,

’http://www.arches.uga.edu/\~vstaub/

GlobalInfoSys/project/ontology/ns1;Could_have_been_10029’],

[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10058’,

’http://ainge.cs.uga.edu/gis/publications#from_project’,

’http://ainge.cs.uga.edu/gis/publications#Could_have_been_00043’],

[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10058’,

’http://ainge.cs.uga.edu/gis/publications#has_citations’,

’http://www.arches.uga.edu/\~vstaub/

GlobalInfoSys/project/ontology/ns1;Could_have_been_10013’],

[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10058’,

’http://ainge.cs.uga.edu/gis/publications#has_authors’|...],

[’http://ainge.cs.uga.edu/gis/publications#Could_have_been_10058’|...],

[...|...]|...]

Yes

?-

% halt

8.3. Embedded Kowari. Fedora uses Kowari, but it is misleading in that it
makes it seem as though a near full installation of Kowari exists. Instead it is
highly embedded and extremely difficult to work with anything outside of the
standard configuration. Fedora’s perspective is as follows:

The combination of representing explicit relationships as RDF/XML
in a datastream of a digital object and then mapping them to the
Kowari triple store offers the best of both worlds. The explicit repre-
sentation provides the basis for exporting, transporting, and archiv-
ing of the digital objects with their asserted relationships to other
objects. The mapping to Kowari provides a graph-based index of
an entire repository and the basis for high-performance queries over
the relationships.

Our preliminary report on query performance of various triple
store technologies is available at http://tripletest.sourceforge.
net/2005-06-08/index.html We are planning a future publication
that explores these results and their implications. The added ad-
vantage of the dual representation is that the entire triple store can
be rebuilt by importing and parsing the XML-based digital objects.
Lagoze et al. (2006)

26

A project in the United Kingdom, RepoMMan released “D-D8 Report on expe-
riences with Fedora during the first year” and commented that

Fedora has an integrated Kowari datastore to provide a searchable
graph of relationships between objects, the so-called resource in-
dex. The Kowari datastore is not easily amenable to being replaced
Green (2006)

More specifics of the use of the Fedora digital object as a carrier of metadata is
written in the 2005 whitepaper, “Fedora Open Source Repository Software”:

As stated earlier, each Fedora digital object has a slot for metadata
that expressing the relationship of the object to other digital objects,
and in fact to information entities outside of Fedora (for example,
external web pages). This feature makes use of state- of-the-art
semantic web technologies. Relationships are stored within a special
datastream in a digital object as statements encoded in the Resource
Description Format (RDF) XML syntax. These relationships may
be derived from any ontology, including a basic relationship ontology
supplied with Fedora. The Fedora system automatically indexes the
relationship metadata from all digital objects in a special database.
This database can be queried using a query language specialized
for extracting information from a relationship graph. This query
interface is exposed as a service in the Fedora API, and in fact can
be used for dynamic disseminations like any web service. Fedora
Development Team (2005)

The interface to query these relationships is limited If one wants to edit the
relationships, perform complex queries (inferencing)

This relationship metadata is automatically indexed into the rela-
tionship store. As a result, as shown in Figure 5, demo:10 can have a
URL-accessible dissemination that queries the relationship store to
return its list of members. Note that these queries can traverse the
entire relationship graph, not just information local to the relation-
ship metadata in an individual digital object. Fedora Development
Team (2005)

8.4. Remote Kowari and Fedora/Trippi. Due to the fact that Kowari is em-
bedded in Fedora and uses Trippi for writing triples, and the SWI-Prolog appli-
cation connects to an RMI server, it seemed optimal to use the solitary instance
of Kowari used in prior testings. Fedora documentation explains how to configure
Fedora in order to use a remote instance of Kowari. Unfortunately, due to the fact
that Fedora uses Kowari, which is no longer is development, the classes in Trippi
and Kowari are different and incompatible. Due to current development on Fedora
3.0, the focus is on creating compatibility with Mulgara, therefore Kowari-specific
issues are not being addressed.

27

The following was submitted to the Fedora Commons mailing-list on Source-
forge. There were no replies:

From: Chad Curtis ¡ccurtis3@ui...¿ - 2007-09-13 18:53
After extensive searching and troubleshooting I’m seeking help for triplestore

rebuilding issues.
BACKGROUND: My first goal is to send an iTQL query to the embedded

Kowari in Fedora Commons 2.2.1, using an application developed at my university.
When I use the application to query a stand-alone Kowari installation, I have no
problems regardless the version of Kowari. My

first goal was unfruitful as I could not find enough information on what is miss-
ing/patched in the embedded Kowari, except on the Trippi side of things. I put the
first goal to the side. My second goal is to set up a remote Kowari installation as
the Resource Index for Fedora Commons, then query the remote Kowari through
my application. I need to emphasize that the purpose of the project it to bypass
the risearch interface/Trippi. Eventually the same application will query Mulgara
in Fedora Commons 3.0.

Environment: Debian Etch Kowari 1.0.5 Fedora 2.2.1 Java 1.5.0 12 Tomcat
5.0.28

ISSUE: When rebuilding a remote Kowari the following exceptions, pasted be-
low, are thrown. After searching mailing list archives I found someone who had the
exact same errors in Jan. 2007, but the issue was never addressed, at least publicly.
I tried contacting the SourceForge user, but did not receive an answer. At first I
thought it would be a firewall/permissions/policy issue, but it seems to be related
to Fedora/Trippi code. The fact that fedora.common.rdf.FedoraViewNamespace
does not implement serialization looks like a starting point:

INFO [main] (ConcurrentTriplestoreWriter.java:327) - Closing...

org.kowari.query.QueryException: Java RMI failure

at

org.kowari.server.rmi.RemoteSessionWrapperSession.testRetry

(RemoteSessionWrapperSession.java:735)

at org.kowari.server.rmi.RemoteSessionWrapperSession.insert

(RemoteSessionWrapperSession.java:233)

at org.trippi.impl.kowari.KowariSession.doTriples

(KowariSession.java:142)

at org.trippi.impl.kowari.KowariSession.add

(KowariSession.java:128)

at org.trippi.impl.base.MemUpdateBuffer.writeBatch

(MemUpdateBuffer.java:199)

at org.trippi.impl.base.MemUpdateBuffer.flush

(MemUpdateBuffer.java:123)

at
28

org.trippi.impl.base.ConcurrentTriplestoreWriter.flushBuffer

(ConcurrentTriplestoreWriter.java:272)

at org.trippi.impl.base.ConcurrentTriplestoreWriter.close

(ConcurrentTriplestoreWriter.java:330)

at org.trippi.impl.kowari.KowariConnector.close

(KowariConnector.java:287)

at fedora.server.resourceIndex.ResourceIndexImpl.close

(ResourceIndexImpl.java:379)

at fedora.server.resourceIndex.ResourceIndexRebuilder.finish

(ResourceIndexRebuilder.java:193)

at fedora.server.utilities.rebuild.Rebuild.<init>

(Rebuild.java:116)

at fedora.server.utilities.rebuild.Rebuild.main(Rebuild.java:

367)

Caused by: java.rmi.MarshalException: error marshalling arguments;

nested exception is:

java.io.NotSerializableException:

fedora.common.rdf.FedoraViewNamespace

at sun.rmi.server.UnicastRef.invoke(UnicastRef.java:122)

at org.kowari.server.rmi.RemoteSessionImpl_Stub.insert

(Unknown Source)

at org.kowari.server.rmi.RemoteSessionWrapperSession.insert

(RemoteSessionWrapperSession.java:228)

... 11 more

Caused by: java.io.NotSerializableException:

fedora.common.rdf.FedoraViewNamespace

at java.io.ObjectOutputStream.writeObject0

(ObjectOutputStream.java:1081)

at java.io.ObjectOutputStream.defaultWriteFields

(ObjectOutputStream.java:1375)

at java.io.ObjectOutputStream.writeSerialData

(ObjectOutputStream.java:1347)

at java.io.ObjectOutputStream.writeOrdinaryObject

(ObjectOutputStream.java:1290)

at java.io.ObjectOutputStream.writeObject0

(ObjectOutputStream.java:1079)

at java.io.ObjectOutputStream.defaultWriteFields

(ObjectOutputStream.java:1375)

at java.io.ObjectOutputStream.writeSerialData

(ObjectOutputStream.java:1347)

at java.io.ObjectOutputStream.writeOrdinaryObject

29

(ObjectOutputStream.java:1290)

at java.io.ObjectOutputStream.writeObject0

(ObjectOutputStream.java:1079)

at java.io.ObjectOutputStream.writeObject

(ObjectOutputStream.java:302)

at java.util.HashSet.writeObject(HashSet.java:254)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke

(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke

(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:585)

at java.io.ObjectStreamClass.invokeWriteObject

(ObjectStreamClass.java:917)

at java.io.ObjectOutputStream.writeSerialData

(ObjectOutputStream.java:1339)

at java.io.ObjectOutputStream.writeOrdinaryObject

(ObjectOutputStream.java:1290)

at java.io.ObjectOutputStream.writeObject0

(ObjectOutputStream.java:1079)

at java.io.ObjectOutputStream.writeObject

(ObjectOutputStream.java:302)

at sun.rmi.server.UnicastRef.marshalValue(UnicastRef.java:258)

at sun.rmi.server.UnicastRef.invoke(UnicastRef.java:117)

... 13 more

WARN [main] (ConcurrentTriplestoreWriter.java:334) - Error flushing

update buffer while closing Triplestore: org.trippi.TrippiException:

Error adding triples: org.kowari.query.QueryException: Java RMI failure

INFO [main] (ConfigurableSessionPool.java:218) - Closing all

sessions...

INFO [main] (KowariSession.java:310) - Closed session.

INFO [main] (KowariSession.java:310) - Closed session.

INFO [main] (KowariSession.java:310) - Closed session.

INFO [main] (KowariSessionFactory.java:253) - Closing underlying

SessionFactory...

Finished.

8.5. JPL memory handling. JPL has threading issues with JVM and is un-
stable and not scalable. Initially the JPL-based Prolog code used on the Prolog
to Kowari interface was also going to be used for an interface of BECHAMEL to
Tupelo. Memory management issues in JPL has halted further development on a

30

JPL-based BECHAMEL to Tupelo interface. Plans for the interface are forthcom-
ing.

9. Glossary

Information retrieved and cited from websites, wikis, and papers of projects.

9.1. BECHAMEL. The BECHAMEL system is a knowledge representation and
inference environment for expressing and testing semantic rules and constraints
for markup languages. Written in Prolog, the system provides predicates for pro-
cessing the syntactic structures that emerge from a SGML/XML parser, defining
object classes, instantiating object instances, assigning values to properties, and
establishing relationships between or among object instances. BECHAMEL uses
Prologs built-in capabilities to derive inferences from these facts.

Part of the ongoing development of BECHAMEL involves experimenting with
strategies for mapping syntactic relations to object relations and properties. The
paper Öbject mapping for markup semanticsd̈escribes the current strategy, based
on a blackboard model. Advantages of this approach include context free rules
and the potential to exploit parallel processing for scalability. It has the drawback,
however, of not permitting evidence to be described in ways people are likely to
find natural or familiar. By using the current approach to produce formal accounts
of the semantics of popular markup languages, we hope to learn a great deal about
the ways markup syntax typically cues semantic relationships. That advance in
our understanding will inform the development of more usable languages for object
mapping. Dubin (2003)

9.2. Fedora Commons. Fedora Commons is an open-source, digital repository
service that provides the foundation for many types of information management
systems. The Fedora platform is logically divided into four major functional areas
that reflect its first principles:

1. repository services 2. preservation services 3. semantic services 4. enterprise
services

These are critical services that should be offered by any platform whose purpose
is to enable collaborative applications while attending to the challenges of infor-
mation management and preservation. Using a standards-based, service-oriented
architecture, the Fedora platform provides an extensible framework of service com-
ponents to support features such as OIA-PMH, search engine integration, messag-
ing, workflow, format conversion, bulk ingest, and others. In addition, features
such as authentication, fine-grained access control, content versioning, replication,
integrity checking, dynamic views of digital objects, and more are incorporated
into the Fedora repository service. Fedora provided services can be seamlessly
integrated into an organization’s existing infrastructure, protecting and enhancing
prior investments.

31

Many of Fedora’s features exploit its flexible and extensible digital objects, which
are containers for metadata, one or more representations of the content and rela-
tionships to other information resources. Fedora’s digital objects provide ”Lego-
like” building blocks to support uniform management and access to heterogeneous
content including books, images, articles, datasets, multi-media, and more. Access
to the digital object is provided by disseminators, which can simply deliver a de-
sired portion of the digital object or can deliver a customized view. Fedora’s digital
objects are self-describing and self-delivering-key features that enable preservation.

9.3. Kowari Metastore. An open source, massively scalable, transaction-safe,
purpose-built database for the storage and retrieval of metadata.

Much like a relational database, one stores information in Kowari and retrieves
it via a query language. Unlike a relational database, Kowari is optimized for the
storage and retrieval of many short statements (in the form of subject-predicate-
object, like ”Kowari is fun” or ”Kowari imports RDF”). Kowari is not based
on a relational database due to the large numbers of table joins encountered by
relational systems when dealing with metadata. Instead, Kowari is a completely
new database optimized for metadata management. http://www.kowari.org/

oldsite/1061.htm

9.4. JRDF. JRDF is an attempt to create a standard set of APIs and base im-
plementations to RDF (Resource Description Framework) using the latest version
of the Java language.

9.5. N3 (Notation 3). Notation-3 is more user-firendly serialization of RDF.

9.6. N-Triples. N-Triples is a line-based, plain text format for encoding an RDF
graph. It was designed to be a fixed subset of N3[N3] [N3-Primer] and hence N3
tools such as cwm [CWM], n-triples2kif [N-TRIPLES2KIF], and Euler [EULER]
can be used to read and process it. cwm can output this format when invoked as
”cwm -ntriples”. http://www.w3.org/TR/rdf-testcases/

9.7. RDF. The Resource Description Framework (RDF) is a language for repre-
senting information about resources in the World Wide Web. It is particularly
intended for representing metadata about Web resources, such as the title, author,
and modification date of a Web page, copyright and licensing information about
a Web document, or the availability schedule for some shared resource. However,
by generalizing the concept of a ”Web resource”, RDF can also be used to repre-
sent information about things that can be identified on the Web, even when they
cannot be directly retrieved on the Web. Examples include information about
items available from on-line shopping facilities (e.g., information about specifica-
tions, prices, and availability), or the description of a Web user’s preferences for
information delivery.

RDF is intended for situations in which this information needs to be processed
by applications, rather than being only displayed to people. RDF provides a

32

common framework for expressing this information so it can be exchanged between
applications without loss of meaning. Since it is a common framework, application
designers can leverage the availability of common RDF parsers and processing
tools. The ability to exchange information between different applications means
that the information may be made available to applications other than those for
which it was originally created.

RDF is based on the idea of identifying things using Web identifiers (called
Uniform Resource Identifiers, or URIs), and describing resources in terms of simple
properties and property values. This enables RDF to represent simple statements
about resources as a graph of nodes and arcs representing the resources, and their
properties and values.

9.8. SWI-Prolog. SWI-Prolog is an open source implementation of the program-
ming language Prolog, commonly used for teaching. SWI-Prolog has been under
continuous development since 1987. Its main author is Jan Wielemaker. It has a
rich set of features, libraries (including its own GUI library, XPCE), developer tools
(including an IDE supporting a GUI debugger and a GUI profiler), and extensive
documentation. SWI-Prolog runs on Unix, Windows and Macintosh platforms.
http://en.wikipedia.org/wiki/SWI-Prolog

9.9. Trippi. Trippi (pronounced, ’tri-pE) is a Java library providing a consistent,
thread-safe access point for updating and querying a triplestore. It is similar in
spirit to JDBC, but for RDF databases.

In addition to the API, the Trippi distribution comes with two higher-level
applications for working with triplestores: A console and a web service.

Trippi connectors currently exist for Sesame, Kowari, Oracle Spatial, and MPT-
Store. See the Trippi Implementation Guide for details on how to write a Trippi
adapter for your own triplestore software.

9.10. Tupelo. Tupelo is a data and metadata archiving system based on semantic
web technologies. Tupelo provides a variety of generic utilities for managing large
RDF graphs using best-of-breed RDF database implementations such as Kowari.
(We plan to support Mulgara.)

Tupelo is designed for archiving large-scale, complex scientific data and meta-
data collections. It is also suitable for more conventional digital libraries contain-
ing Dublin Core or other standard digital library metadata schemas. Its RDF-
based metadata framework can support a wide variety of schemas, from simple,
flat-namespace schemas such as Dublin Core, to hierarchical models derived from
XML Schema, to more web-like models derived from RDF variants such as RSS.
If you can describe it using entity-relation graphs, you can store it in Tupelo.
http://dlt.ncsa.uiuc.edu/wiki/index.php/Main_Page

33

References

Dubin, D. (2003). Object mapping for markup semantics. In B. T. Usdin (Ed.)
Proceedings of Extreme Markup Languages 2003 . Montreal, Quebec.
URL http://www.mulberrytech.com/Extreme/Proceedings/html/2003/

Dubin01/EML2003Dubin01-toc.html

Dubin, D. (2007). Metadata analysis for digital preservation (poster session). In
Association for Library and Information Science Education 2007 . Association
for Library and Information Science Education.

Dubin, D., & Birnbaum, D. (2004). Interpretation beyond markup. In B. T. Usdin
(Ed.) Proceedings of Extreme Markup Languages 2004 . Montreal, Quebec.
URL http://www.mulberrytech.com/Extreme/Proceedings/html/2004/

Dubin01/EML2004Dubin01.html

Dubin, D., Sperberg-McQueen, C. M., Renear, A., & Huitfeldt, C. (2003). A logic
programming environment for document semantics and inference. Literary and
Linguistic Computing , 18 (2), 225–233. (This is a corrected version of an article
that appeared in 18:1 pp. 39-47).
URL http://llc.oxfordjournals.org/cgi/reprint/18/2/225

Fedora Commons offical website (2007). http://www.fedora-commons.org/about/.
URL http://www.fedora-commons.org/about/

Fedora Commons System Documentation (2007).
http://www.fedora.info/download/2.2.1/userdocs/.
URL http://www.fedora.info/download/2.2.1/userdocs/

Fedora Development Team (2005). Fedora open source repository software. Tech.
rep., Cornell University and University of Virginia.
URL http://fedora.info/documents/WhitePaper/FedoraWhitePaper.pdf

Green, R. (2006). Repomman project: D-d8 report on experiences with fedora
during the first year. Tech. rep., The University of Hull.
URL http://www.hull.ac.uk/esig/repomman/downloads/

D-D8-fedora-exp-v10.pdf

JPL (2007).
URL http://www.swi-prolog.org/packages/jpl/

Kowari MetaStore (2005). http://www.kowari.org/oldsite/1061.htm.
URL http://www.kowari.org/oldsite/1061.htm

Lagoze, C., Payette, S., Shin, E., & Wilper, C. (2006). Fedora: an architecture
for complex objects and their relationships. International Journal on Digital
Libraries , V6 (2), 124–138.
URL http://portal.acm.org/citation.cfm?id=1124652

Payette, S. (2007). Fedora commons proposal to the gordon and betty moore
foundation. Tech. rep., Cornell University.

Renear, A., Dubin, D., Sperberg-McQueen, C. M., & Huitfeldt, C. (2002). Towards
a semantics for XML markup. In R. Furuta, J. I. Maletic, & E. Munson (Eds.)

34

Proceedings of the 2002 ACM Symposium on Document Engineering , (pp. 119–
126). McLean, VA: Association for Computing Machinery.
URL http://doi.acm.org/10.1145/585058.585081

Renear, A., Dubin, D., Sperberg-McQueen, C. M., & Huitfeldt, C. (2003). XML
semantics and digital libraries. In C. C. Marshall, G. Henry, & L. Delcambre
(Eds.) Proceedings of the third ACM/IEEE-CS joint conference on Digital li-
braries , (pp. 303 – 305). Los Alamitos, CA: IEEE.
URL http://portal.acm.org/citation.cfm?id=827192

Sperberg-McQueen, C. M., Dubin, D., Huitfeldt, C., & Renear, A. (2002). Drawing
inferences on the basis of markup. In B. T. Usdin, & S. R. Newcomb (Eds.)
Proceedings of Extreme Markup Languages 2002 . Montreal, Quebec.
URL http://www.w3.org/People/cmsmcq/2002/EML2002Sper0518.final

SWI-Prolog (2007). http://www.swi-prolog.org/hcs.html.
URL http://www.swi-prolog.org/hcs.html

Trippi (2007). http://trippi.sourceforge.net/.
URL http://trippi.sourceforge.net/

Tupelo (2007). http://dlt.ncsa.uiuc.edu/wiki/index.php/overview.
URL http://dlt.ncsa.uiuc.edu/wiki/index.php/Overview

Wilper, C. (2007). Email. Personal communication.
Wood, D. (2007). David wood talks with talis about mulgara and semantic web

databases. Interview.
URL http://talk.talis.com/archives/2007/05/david_wood_talk.html,

http://talis-podcasts.s3.amazonaws.com/twt20070430-David_Wood.mp3

35

