

HONOURS YEAR PROJECT REPORT

Citation Parsing Using
Maximum Entropy and Repairs

By

Ng Yong Kiat

Department of Computer Science

School of Computing

National University of Singapore

2004/2005

HONOURS YEAR PROJECT REPORT

Citation Parsing Using
Maximum Entropy and Repairs

By

Ng Yong Kiat

Department of Computer Science

School of Computing

National University of Singapore

2004/2005

Project No: H79040
Advisor: Assistant Professor Kan Min-Yen

Deliverables: Report 1 Volume

 i

Abstract

This thesis presents ParsCit, a system which parses citations from a publication or

article, and label parts of citations with their corresponding field names. As citation

styles differ between disciplines, publishers and authors, the task of citation parsing is

difficult and inherently ambiguous. Whereas traditional citation parsers use a

manually compiled set of rules to perform parsing, ParsCit adopts the framework of

machine learning, learning rules for parsing from annotated data. A maximum entropy

framework is employed to create a basic citation parse, and a series of repairs is

performed to improve system accuracy. Given as few as 500 training examples,

ParsCit is able to achieve a token accuracy of 94.20%, comparable to related machine

learning approaches which lack the use of features applicable to the context of citation

parsing. In this paper, I shall also emphasize the efficiency of the system’s set of

repairs, which is absent in citation parsers seen to date.

Subject Descriptors:

I.2.6 Learning

I.2.7 Natural Language Processing

Keywords:

 Text processing, Maximum Entity, Citation Parser

Implementation Software and Hardware:

DELL PC Intel Pentium 4 CPU 1.60GHz with 256 MB RAM, Windows XP,

Perl, HTML, Java, MAXENT Package, pdftotext from Xpdf

 ii

Acknowledgments

 I would like to express my deepest gratitude to my Honours Year Project

supervisor Assistant Professor Kan Min-Yen for his invaluable advice and

encouragements throughout the course of my research. Assistant Prof. Kan is always

there to patiently explain to me theories and concepts related to my work.

 I would also like express my sincere thanks to all Computer Engineering

course mates as well as friends from Honours Year Lab 7 for their enduring support.

 iii

List of Tables
Table 1 Table of pros and cons of various approaches 7

Table 2 Features used in ParsCit 15

Table 3 Features generated for the annotated citation. 18

Table 4 Confusion Matrix on output of baseline parsing 19

Table 5 Field lengths and proposed bubble size to be repaired 22

Table 6 Table of keys of fields 23

Table 7 Performance of ParsCit using different sets of features 26

Table 8 Extraction results (Accuracy measured in tokens) 27

Table 9 Performance comparison between baseline parse and repairs 28

Table 10 Evaluation of repairs done on HMM and ParsCit baseline 29

List of Figures
Figure 1 Bibliography 1

Figure 2 Example of a BibTeX entry 2

Figure 3 Sample output from ParsCit 2

Figure 4 Sample output of a citation parsed by ParaTools 5

Figure 5 Relationships between states and output symbols in a HMM 6

Figure 6 System Flow of ParsCit 12

Figure 7 Sample of tagged corpus from Cora dataset 16

Figure 8 Extended set of 52 tags used for system training 17

Figure 9 Correctly annotated citation and its baseline parse with single errors 20

Figure 10 Templates with one repeated field 23

Figure 11 F1 comparison between baseline parse and repairs 28

 iv

Table of Contents

Title i

Abstract ii

Acknowledgement iii

List of Figures iv

List of Tables iv

1 Introduction 1

2 Related Works 4

2.1 Template Matching Approach: ParaTools 4

2.2 Machine Learning Based Citation Parsing Techniques 5

2.3 Maximum Entropy Modeling 8

2.4 Machine Learning Approach under the ME Framework 9

3 ParsCit System Architecture 12

3.1 ParsCit System Features 13

3.2 Preprocessing of Training Set 15

3.3 Creating a Maximum Entropy Model 18

3.4 Baseline Tagging based on ME Model 19

3.5 Repairs on the output of ParsCit’s Baseline Parse 19
3.5.1 Repairing of Editor Field 20
3.5.2 Repairing of Bubbles 21
3.5.3 Repairing of Repeated Fields 22

4 Overall Performance Comparison 25

4.1 Evaluation of ParsCit Features 26

4.2 Comparison between Methods of Tagging 27

4.3 Evaluation of ParsCit Repairs 28

5 Conclusion and Future Work 30

References 32

Appendix A A-1

A1 – Sample from Training dataset C’ A-1

A2 – Legend for Fields A-2

 v

1 Introduction

In the scholarly communities, citations are a key part of linking discrete pieces of

knowledge into a well-structured record of a field’s advancement. Although citations

can come in many forms, a common standard places a reference to each paper, article

or book used by the authors, in a separate section of the work. This list, often known

as a bibliography, acts as an acknowledgement to these materials and provides exact

publication information to identify each source and allow a reader to locate it for

further study. Figure 1 below shows an example of a bibliography from a research

paper.

F

I

d

s

s

B

s

r

r

1

References
[1] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries and
Autonomous Citation Indexing. IEEE Computer, 32(6):67–71, 1999.
[2] A. Odlyzko. The rapid evolution of scholarly communication. Learned Publishing,
2001. to appear.

igure 1 Bibliography

ndividual references have internal structure: the title, author, publication venue and

ate are all distinct fields. When writing, most authors manage references in a

tructured format, using tools such as BibTeX (Patashnik, 1988) and EndNote®1 to

ort, list and format the reference data. Figure 2 below shows an example entry in a

ibTeX. Once the bibliography is converted to textual string in the publication using

uch tools, the explicit internal structure of each reference is lost (as in Figure 1). A

everse engineering procedure is required to infer the individual fields from each

eference.

 EndNote® by Thomson ResearchSoft. http://www.endnote.com

1

Figure 2 Example of a BibTeX entry

ParsCit’s objective is to recover this structure. It performs this process of citation

parsing by examining each reference and identifying which field each token belongs

to. Figure 3 shows a sample output of a single citation parsed by ParsCit. The

extracted fields from each reference can then be used directly by another author.

More importantly, the recovery of the internal structure of references is mandatory for

various bibliometric analyses and citation indexing.

F

[1] J . F . Allen , Maintaining knowledge about temporal intervals , Comm . ACM
26 (11) (1983) 832 - 843 .

AUTHOR:
J . F . Allen

TITLE:
Maintaining knowledge about temporal intervals

DATE:
(1983)

JOURNAL:
Comm . ACM

VOLUME:
26 (11)

PAGES:
832 - 843 .
@InProceedings{ bollacker98citeseer,
 author = "Kurt Bollacker and Steve Lawrence and C. Lee Giles",
 title = "{CiteSeer}: An Autonomous Web Agent for Automatic Retrieval
and Identification of Interesting Publications",
 booktitle = "Proceedings of the Second International Conference on
Autonomous Agents",
 editor = "Katia P. Sycara and Michael Wooldridge",
 publisher = "ACM Press",
 address = "New York",
 pages = "116-123",
 year = "1998"
}

igure 3 Sample output from ParsCit

2

Automatic extraction of the structure in references has been achieved only in recent

years, but manual effort is still largely required. ParaTools (Jewell, 2002) is a

software module that performs this task using rigid predefined citation styles. It is

thus limited in portability and achieves limited accuracy. CiteSeer (Lawrence, 1998)

does citation parsing by using heuristics and probabilistic models that also requires

manual data collection: the method requires the manual collection of a large database

of author names and journal names to identify reference fields. To correct system

errors, CiteSeer employs Error Distribution Correction (Lawrence, 1999), allowing

users to provide correction to any fields of a publication. Again, this involves manual

supervision.

There have also been centralized attempts at creating unambiguous references by

means of having a standard format. In (Cameron, 1997), Cameron proposed a

universal citation database that required citations in a standardized format. This

would negate the need for citation parsing. However, this meant that all authors would

have to conform strictly to the citation formats, and the concept did not gain much

acceptance. I believe that any centralized approach is bound to fail as individuals

often make mistakes or may want to present their references differently than others.

In the next chapter, I shall touch on works related to citation parsing. In Chapter 3, I

detail the ParsCit algorithm, which is the core contribution of my research. A detailed,

comparative evaluation of ParsCit follows in Chapter 4. I conclude with an

examination of applications and areas of future work in Chapter 5.

 3

2 Related Works

The problem of citation parsing has been the focus of past research initiatives, as

documented in the literature. I shall examine existing citation parsers, which can be

generally divided into two categories: template matching and machine learning based

approaches.

2.1 Template Matching Approach: ParaTools

A template matching approach takes an input citation and matches its syntactic pattern

against known templates. The template with the best fit to the input is then used to

label the citation’s tokens as fields. The canonical example of a template based

approach is ParaTools (short for ParaCite Tools), released by the University of

Southhampton as part of its larger citation indexing project. ParaTools is a set of Perl

modules that parses references into component fields using template matching.

This technique works fairly well for citations which adhere to simple citation patterns,

but is susceptible to errors when it tries to extract fields from citations with many

punctuations, since there may be multiple templates that fit equally well. If the wrong

template is chosen, entire fields will be tagged incorrectly. As references can be

parsed accurately only if their citation style resides among the existing templates, any

template based approach is limited by the coverage of its templates. This is the case

with ParaTools. While ParaTools contains 400 templates, my experiments with the

system show that even this large amount manifests coverage problems. While users

may choose to add new templates to ParaTools manually, the process is cumbersome

and there might be indefinitely many styles for citing different material. The fact that

authors may not strictly adhere to citation styles also diminishes any efforts to

improve template matching techniques by template mining.

A further weakness of ParaTools is that it tags certain fields as ambiguously as “Any”

as seen in Figure 4. Tagging a token as “Any” is equivalent to not tagging the token in

any field, and while it simplifies the problem for ParaTools, places more burden on

human annotators and post-processing editing.

 4

Authors : M. Kitsuregawa, H

Title : Tanaka, and T

Publication : Moto-oka

Any : Application of hash to data base machine and its architecture

Any : New Generation Computing, 1(1)

Year : 1983

Figure 4 Sample output of a citation parsed by ParaTools

A recent thesis (Huang, Ho, Kao and Lin, 2004),reported ParaTool’s precision as

approximately 30%. In my view, this low level of performance and lack of portability

make the approach unsuitable for doing post-parsing processing, such as citation

indexing (Garfield, 1979).

2.2 Machine Learning Based Citation Parsing Techniques

The limitations of the template-based approach have encouraged researchers to try

alternative models for citation parsing. The remaining approaches that I will survey

are all examples of machine learning approaches. Given sufficient training data, a

machine-learned parser can produce high performance in accuracy, regardless of

citation styles.

Hidden Markov Models (HMMs) are a powerful probabilistic tool and has been

applied extensively on various language related tasks. HMMs are a finite state

automaton with stochastic state transitions and symbol emissions (Rabiner, 1989).

Associated with each set of states, 1 2{ , ,..., }nS s s s= is a probability distribution over

the output symbols , in the emission vocabulary. The probability

that state s

1 2{ , ,..., }nV w w w=

i will emit the symbol w is . Similarly, associated with each state is

a distribution over its set of outgoing transitions. The probability of transiting from

state s

(|)iP w s

i-1 to si is then . A dynamic programming solution called the Viterbi

algorithm is used to find the most likely state sequence given a Hidden Markov Model

M and a sequence of symbols, This algorithm has a time complexity of O(TN

1(|)i iP s s −

2), where

T is the length of the sequence and N is the number of states in M.

 5

HMMs may be used for citation parsing by formulating a model in the following way:

each state is associated with a citation field name (hereby called “tag”) such as title,

author or date. A labeled training dataset is first used to train a HMM. This model is

then used to recover the most-likely state sequence that produces the sequence of

observation symbols (i.e. the word tokens of a citation). For example, a sequence of

symbols:

Steve Lawrence . (1999) Digital libraries and Autonomous Citation Indexing .

 may have the most likely state sequence:

author author author date date date title title title title title title title

While HMMs models the and tw x↔ t 1t ts s↔ + relationships as depicted in Figure 5,

the modeling of relationships are not permitted. In another words, we cannot

use several to predict as the Markovian assumption states that the emission

and the transition probabilities depend only on the current state.

tV s↔

'tw s ts

Figure 5 Relationships between states and output symbols in a HMM

In (McCallum and Peng, 2004), a HMM is used to train on labeled training citation

data provided from the now-defunct Cora publication service. Citations are then

parsed by using the trained model to label each word token of a citation. McCallum

reports an overall accuracy of 93.1% for the HMM based parser. Despite of

significant success in various sequence labeling tasks such as Part-of-Speech (POS)

tagging (Ratnaparkhi, 1996) and predicting protein sequence labeling, the HMM

 6

method is less effective due to its assumptions of independent and non-overlapping

features.

In the same paper, McCallum also examined the use of Conditional Random Fields

(CRF) model to parse citations in another experiment. CRFs are undirected graphical

models trained to maximize a conditional probability (Lafferty, McCallum and

Pereira, 2001) and have been applied on tasks such as name entity extraction. A

citation parser based on a CRF model outperforms one that is based on HMM,

boosting overall accuracy to 95.37%. However training time is a concern, as CRFs

converge slowly. It requires approximately 500 iterations for the model based on the

same training set to stabilize.

In view of the above drawbacks and the absence of any well-documented CRF

packages, I pursued another machine learning model. The Maximum Entropy Model

provides flexibility given sufficient training datasets and serves as a balance between

the two mentioned machine learning models.

Table 1 below summarizes the pros and cons of the various techniques discussed.

(Characteristics on the last 2 columns shall be explained in full detail in the next

chapter)

 Portability Package
Avail.

Training
Time
(for 350
lines)

Word
Accuracy

Repeated
Fields

Takes
Global
Context
into
Account

ParaTools Cumber-
some

Open
Source
(Perl)

Not
Required

~ 30% No No

HMM Yes QTAG2
(Java)

< 1 sec

~ 93% Yes No

CRF
Model

Yes Not
Available

500
iterations

~ 95% Yes No

ME
Model

Yes MAXENT3

(Java)
--- --- Yes No

Table 1 Table of pros and cons of various approaches

2 QTAG 3.1 by Mason, O. http://web.bham.ac.uk/O.Mason/
3 opennlp.maxent Package version 2.3.0. http://maxent.sourceforge.net

 7

http://web.bham.ac.uk/O.Mason/

2.3 Maximum Entropy Modeling

The model used for parsing in ParsCit is based on the maximum entropy model.

Using this model, Ratnaparkhi obtained state-of-the-art accuracy of 96.6% in POS

tagging (Ratnaparkhi, 1996). Since then, maximum entropy techniques have widely

used for natural language tasks such as identifying sentence boundaries (Reynar and

Ratnaparkhi, 1997) and text classification (Nigam, Lafferty and McCallum, 1999).

Maximum entropy (ME) is a probability distribution modeling technique. The

principle of ME modeling is to model all that is known and assume nothing about

which is unknown. In other words, given a training dataset, choose a model consistent

with all the constraints, but otherwise as uniform as possible.

ME is used commonly to solve classification problems, in which the objective is to

estimate a classification function , which maps an object :cl X Y→ x X∈ to its

correct class y . X consists of words or sentences and Y is the predefined set of

classes. Given a sentence of n words, we define x

Y∈

∈{the n-word sentence}. POS

tagging is the process of predicting a sequence of n tags corresponding to the sentence,

where x∈Tn and T are the allocable POS tags for a word. This is a typical example of

sequence tagging. Such complex problems are decomposed into a sequence of simpler

classification problems by having a classifier predict the class for each object x. Since

tags are predicted in sequence in POS, a classifier can exploit the previously predicted

n-1 tags to predict the nth tag of the nth word.

In ME, the classification function is implemented with a conditional probability

model p by choosing the class with the highest conditional probability:

() arg max (|)
y

cl x p y x=

Similarly, probability models can implement a complex classifier for

sequence tagging:

: n ncl X Y→

1
1 11 ... 1

(...) arg max (| ... , ...)
n

n

i n in y y i

cl x x p y x x y y −

=

= ∏ 1

where x1…xn, y1…yi-1, informally called the “context” or “history”, is the textual

material available for predicting the class for the ith object. Under the ME framework,

 8

the probability for a class y and object x depends solely on “features” that are active

for the pair (x, y). A predefined feature is defined as a function , i.e.

this feature is either active or inactive. Features are the means through which

problem-specific information is added to the ME model. They encode information

deemed useful in classifying the objects. The importance of each feature is

determined automatically by a parameter estimation algorithm over a pre-classified

dataset (to be explained in the next section).

: (,) {0,1}f X Y →

Functions known as contextual predicates are used in features. If

represents the set of possible classes in the ME model and B represents the set of

possible textual material that we can observe, then a contextual predicate is

represented as the function

1{ ... }nA a a=

: { ,cp B true false→ }

which returns either true or false, corresponding to the presence or absence of useful

information in some context . Features are hence functions of the form b B∈

f : A x B {0, 1}

As such, features will have the form

1 if a = a’ and cp(b) = true
0 otherwise

, '(,)cp af a b =

2.4 Machine Learning Approach under the ME Framework

In the machine learning approach, evidence required to make classifications of an

object can be combined by weighting the features appropriately. With a training

corpus 1 1{(,)...(,)}n na b a bτ = , each tuple (, is a pair of contextual feature b with

its respective correct class a , the weight of each feature can be derived from the log-

linear model (Ratnaparkhi, 1998):

)i ia b i

i

() 1

1 (,)(|)
k

j
j

j

f a bp a b
Z b

α
=

= ∏ (2.1)

where k is the number of features and ()Z b is a normalization factor (2.2) used to

ensure that . (|) 1p a ba =∑

 9

(,)

1

() j
k

f a b
j

a j

Z b α
=

=∑∏ (2.2)

Parameter jα in the model is a non-negative weight to its corresponding feature jf .

The probability (|)p a b is then a product of the weight of features that are present (or

“active”), i.e. features jf such that (,) 1jf a b = , normalized over ()Z b . Since the

objective of ME is to maximize the uncertainty (hence the name maximum entropy)

so as to get a model assumes nothing about which is unknown, ME maximizes

{ , }, {0,1}

() (,) log (,)
a x y b

H p p a b p a b
∈ ∈

= − ∑

the entropy averaged over τ while keeping to constraints the model.

Given k features, each constraint has the form

{ , }, {0,1}

(,) (,)p j j

a x y b

E f p a b f a b
∈ ∈

= ∑

in which is the expectation of feature p jE f jf for model p.

In classification problems, we are interested in predicting the class of an object, given

observations and evidence. Hence, the goal is to find an estimate for the conditional

probability (|)p a b . Under ME, Ratnaparkhi (1998) in his thesis gives the optimal

solution, *p , which is the most uncertain distribution that satisfies the k constraints on

the feature expectations such that:
*

,

,

,

,

arg max ()

() () (|) log (|)

{ | {1... }}
(,) (,)

() (|) (,)

p P

a b

p j p j

p j j

a b

p j j

a b

p H p

H p p b p a b p a b

P p E f E f j k
E f p a b f a b

E f p b p a b f a b

∈
=

= −

= = =

=

=

∑

∑

∑

where p jE f denotes the observed expectation of a feature jf , (,)p a b denotes the

observed probability of (a, b) in a fixed training set, and P denotes the set of

probability models consistent with the observed evidence.

 10

Generalized Iterative Scaling (GIS) algorithm (Darroch and Ratcliff, 1972) can then

be used to compute the weights 1... 2α α of the probability distribution *p .

The use of ME in citation parsing is motivated by its claim of accuracy, knowledge-

poor features and reusability. Ratnaparkhi’s thesis (Ratnaparkhi, 1998) provided

experimental support for state-of-the-art accuracy in various natural language

processing tasks. It is also mentioned that feature sets used “rely less on linguistic

knowledge, preprocessing, or semantic databases than competing approaches”. Hence,

it is a candidate for a machine learning based citation parser, given an appropriate set

of predefined features which contains contextual information. Besides, the fact that

the model assumes nothing apart from a given set of constraints, a citation parser built

upon this framework should also perform reasonably well for citations from different

disciplines, even if the training set is small.

Tasks such as sequence labeling problems benefit from a richer representation of

observations, in particular a representation that describes observations in terms of

overlapping features. While Hidden Markov Model is unable to represent overlapping

features, the ME model is adequate in this aspect.

Maximum Entropy Model has its drawbacks as well. As with other machine learning

models, we cannot easily represent that states (fields) cannot be repeated after

appearing once in a parse sequence. In other words, the maximum entropy model

occasionally repeats fields which are only allowed to appear once in a citation (as

depicted in Table 1). For example, the citation:

“Stuart, A., 1984. The Ideas of Sampling., Charles Griffen, London .”

when parsed by a machine learner may have both “Stuart, A.” and “Charles Griffen”

labeled as ‘author’ when the latter should be properly labeled as ‘publisher’. This is a

common problem of most machine learning approaches to citation parsing. Since

fields generally do not repeat in the citations, such errors can be easily detected.

 11

3 ParsCit System Architecture

Annotated
Citations
(training
dataset)

Preprocessing
and Feature
Generation

Literature to
be Parsed

ME
Modeling

Bibliography
Extractor

Baseline
Parsing

Repairs

Templates
Extraction

Repair
Repeated

Fields

Final Output:
Extracted Fields of each
Citation in Bibliography

Feature
Generation

Figure 6 System Flow of ParsCit

Figure 6 shows the flow of the ParsCit system. This chapter will go into the

explanation of each step. The main contribution of this work is twofold: the selection

of features used in the context of citation parsing and the repairs done on a baseline

parse in section 3.5. This set of repairs, which distinguishes ParsCit from other

 12

citation parsers, shows considerable improvement in accuracy as evaluated in Chapter

4.

3.1 ParsCit System Features

Features F1 to F19 used in training and testing by ParsCit are specific to the context

of citation parsing. The features can be classified into the following categories:

• Lexical Features

These features observes the morphological features of the current token and

that of its surrounding tokens

• Layout Features

Features which observe

o position of token relative to the entire line of the current citation

o special characteristics of surrounding tokens

o tags of surrounding tokens

• Local Features

Features which are derived from the current token. These features observes

certain characteristics of the current token.

• Dictionary Features

Features used to indicate if the current token belongs to any of the dictionaries

incorporated into ParsCit. The vocabulary includes keywords or tokens

deemed as useful in predicting the tags. Table 2 below shows the dictionary

used in ParsCit. A database of 97900 male names, female names and last

names from various languages gathered from various sources4 are used in the

IsName feature.

4 Names from various sources:
 ftp://ftp.funet.fi/pub/doc/dictionaries/DanKlein/

http://www.census.gov/genealogy/names/
http://www.geocities.com/Tokyo/3919/atoz.html

 13

ftp://ftp.funet.fi/pub/doc/dictionaries/DanKlein/
http://www.census.gov/genealogy/names/
http://www.geocities.com/Tokyo/3919/atoz.html

Table 2 below lists all the System Features in ParsCit.

Set Feature Conditions and Examples

Lexical
F1 Pre1, Pre2… Pre4

Suf1, Suf2… Suf4
Prefix and suffix of the current token.
For a word token ‘Artificial’, features
Pre1=A
Pre2=Ar
Pre3=Art
Pre4=Arti
Suf1=l
Suf2=al
Suf3=ial
Suf4=cial
are generated

Layout
F2 Wi-2, Wi-1, Wi, Wi+1, Wi+2 Wi-1 as previous token, Wi as current

token, Wi+1 as next token
F3 TV, TVV, TVVV, TVVVV Tags of previous tokens
F4 FieldV, FieldVV, FieldVVV Fields prior to the current token.

For a token currently at the 4th field in a
citation, with the first 3 fields ‘author’,
‘date’, ‘title’,
FieldV=title
FieldVV=datetitle
FieldVVV=authordatetitle

F5 Posn The position, ranging from 1 to 10, of a
token relative to the line of citation is
calculated.
Given a 3rd token of a 5 token citation
line, Posn=6 for this token

F6 BoundV Previous token is a potential field
boundary (ie the tokens ‘,’, ‘.’, ‘;’)

F7 (Pre
)Next

Previous token is ‘(‘
Next token is ‘)’

F8 NumPre
NumNext

Previous token is a number.
Next token is a number

F9 PunctPre
PunctNext

Previous token is a punctuation
Next token is a punctuation

F10 /Pre, /Next Previous token is ‘/’
Next token is ‘/’

Local
F11 Year

Contains a 4-digit number in the form
18XX, 19XX, or 20XX.
e.g. ‘1999a’, ‘1999b’

F12 1DigNum, 2DigNum,
3DigNum, 4DigNum

Current token is a 1-digit number, 2-
digit number, 3-digit number or 4-digit
number

F13 ContainsDIG Contains numerical digits

 14

e.g. ‘4th'
F14 OneCap Is a single capital letter.

e.g. ‘A’, ‘K’
F15 InitCap

AllCaps

Begins with a capital letter.
e.g. ‘Proceedings’
All capital letters
e.g. ‘IEEE’

Dictionary
F16 MonthName Current token is a month name

e.g. ‘January’, ‘Jan’
F17 IsName Current token is a name or last name
F18 EdKeys Current token is a keyword common in

‘editor’ fields.
e.g. ‘Ed’, ‘edited’

F19 PgKeys Current token is a keyword common in
‘page’ fields
e.g. ‘pp’, ‘page’, ‘pg’, ‘-’

Table 2 Features used in ParsCit

3.2 Preprocessing of Training Set

ParsCit’s system training requires an existing corpus of correctly tagged citations. The

dataset, hereby defined as C, used in ParsCit was created by the Cora project

(McCallum, Nigam, Rennie and Seymore, 2000). C is a dataset of 500 correctly

tagged citations, made up of a total of 12,153 word tokens. The 13 tags used in this

dataset are: author, title, editor, booktitle, date, journal, volume, tech, institution,

pages, location, publisher and note. ParsCit uses the same set of 13 tags in its

implementation for citation parsing for ease of comparison with previous work. A

sample of tagged citations from C is shown in Figure 7.

 15

 Figure 7 Sample of tagged corpus from Cora dataset

<author> A. Cau, R. Kuiper, and W.-P. de Roever. </author> <title> Formalising
Dijkstra's development strategy within Stark's formalism. </title> <editor> In C. B.
Jones, R. C. Shaw, and T. Denvir, editors, </editor> <booktitle> Proc. 5th. BCS-
FACS Refinement Workshop, </booktitle> <date> 1992. </date>

<author> M. Kitsuregawa, H. Tanaka, and T. Moto-oka. </author> <title>
Application of hash to data base machine and its architecture. </title> <journal>
New Generation Computing, </journal> <volume> 1(1), </volume> <date> 1983.
</date>

<author> Alexander Vrchoticky. </author> <title> Modula/R language definition.
</title> <tech> Technical Report TU Wien rr-02-92, version 2.0, </tech>
<institution> Dept. for Real-Time Systems, Technical University of Vienna,
</institution> <date> May 1993. </date>

Dataset C has to be preprocessed in order obtain features required to create a ME

model. The procedures to do this are as follows:

• Tokenize C

• Append correct tag to each token accordingly (including punctuations) to form

(token, tag) pairs

• Add <start> and <end> tokens to each citation

First, C is tokenized so that punctuations are separated as tokens by themselves;

otherwise, ‘1993’ and ‘1993.’ would be treated as two different tokens. The citations

are re-tagged such that each token is followed by its corresponding tag, forming

(token, tag) pairs. I employ a chunk-based technique used for tagging each token

similar to that was used for Named Entity Recognition in (Borthwick, Sterling,

Agichtein and Grishman, 1998). For any particular tag among the 13, take for

example ‘author’, a token could be in any of the four states:

• author%HEAD

• author%BODY

• author%TAIL

• author%SOLO

where I define the trailing ‘HEAD’, ‘BODY’, ‘TAIL’ and ‘SOLO’ as chunk-

descriptors. Instead of using 13 tags to define the citation fields, an extended set of 52

 16

tags is used as seen in Figure 8. For example, during system training, an entire ‘page’

field

<pages> pp. 168–175 </pages>

from C will be re-tagged as

pp_pages%HEAD ._pages%BODY 168_pages%BODY -_pages%BODY
175_pages%TAIL

Fields that contain only a single word token will be retagged with “%SOLO”

appended to the field name. The training dataset after the preprocessing procedures is

defined as C’ (please refer to Appendix B – Sample from Training dataset C’).

Finally, a ‘<start> <start>’ pair is then added before the first token of each citation to

indicate the beginning of the citation and a ‘<end> <end>’ pair appended to the end of

it. C’ now consists of a dataset of citations in the form of (token, tag) pairs.

author

title

editor

booktitle

date HEAD
journal BODY

Χ volume TAIL
tech SOLO

institution

pages

location
Chunk-descriptors publisher

note

Figure 8 Extended set of 52 tags used for system training

 17

3.3 Creating a Maximum Entropy Model

Features from annotated citations in the form of (token, tag) tuples are generated from

C’. For each word token in C’, features listed as in Table 2 are generated.

For the token ‘Software’ in the following annotated citation line in C’,

Ostroff , J . S . , " Temporal Logic for Real - Time Systems " , Advanced
Software Development Series , England , 1989 .

Note: annotated citations in this thesis will hereafter be “color-font-coded” for easier
viewing. Please refer to Appendix B – Legend for Fields

some of the features generated for the token ‘Software’ are listed in the following

table:

Features Generated for ‘Software’ Explanation
Pre1=S Pre2=So Pre3=Sof Pre4=Soft
Suf1=e Suf2=re Suf3=are Suf4=ware

Its lexical features

Wi-1=Advanced Wi=Software
Wi+1=Development

The surrounding words

TV=booktitle%HEAD
TVV=title%TAILbooktitle%HEAD

The previous two tags

FieldV=author FieldVV=authortitle ‘Software’ is in the 3rd field. Its previous
fields are ‘author’ and ‘title’

Posn=7 19th token out of 26 total tokens gives a
position of value 7

Table 3 Features generated for the annotated citation. See Table 2 for feature descriptions.

A training file consisting of pairs of features and the correct tag associated with each

pair is then used for training. ParsCit uses an open source package, opennlp.maxent

(Baldridge, Morton, Bierner and Friedman, 2001) to create a probability model *p

based on this training file.

GIS is used to find optimal weights. The time complexity of each iteration is O(N P

A), where N is the training set size, P is the number of predictions, and A is the

average number of features active for each prediction. The number of iterations used

for ParsCit’s training is set at 100 since using more iteration produces only minute

accuracy gains.

 18

3.4 Baseline Tagging based on ME Model

A similar feature generation for each word token is done for the process of citation

parsing. The only difference is that features F3 and F4 are dependent on the

predictions made for previous tokens. In the example above, given that the previous

token ‘Advanced’ is tagged as ‘booktitle%HEAD’, feature ‘TV=booktitle%HEAD’

would have been appended to features corresponding to the token ‘Software’ when

ParsCit is tagging ‘Software’. Since ParsCit does tagging token by token from left to

right, F3 and F4 for each test token are created on the fly.

After each token is tagged using the probability model trained previously, the chunk-

descriptors are removed, resulting in tuples of (token, tags). This output is considered

the baseline parse.

3.5 Repairs on the output of ParsCit’s Baseline Parse

A detailed analysis on the results of the baseline parsing shows that there are a

number of ways in which they can be repaired to gain a higher accuracy of extracted

fields. A confusion matrix M, derived from the ten-fold cross validation on C’, is one

that shows the number of word tokens from one field (TagX) that are incorrectly

tagged as another field (TagY). The confusion matrix M after a 10-fold cross

validation baseline parse is as follows:

 TagX
TagY

author title editor btitle date journal volume tech instn pages location publr note

author 5308 138 174 8 18 20 4 4 9 1 9 3 2
title 12 4403 16 76 2 32 1 5 16 4 10 4 26

editor 17 0 385 36 3 6 5 0 0 0 4 3 3
btitle 0 15 3 2083 22 73 26 13 8 4 27 15 25
date 1 10 12 7 1493 3 4 6 3 10 14 3 9

journal 1 26 3 46 0 671 5 22 6 2 14 3 15
volume 0 2 1 11 11 4 608 2 3 9 8 2 1

tech 0 4 0 8 0 2 0 289 5 0 1 0 6
instn 1 0 0 1 3 3 1 5 350 2 27 5 1
pages 0 4 1 4 16 3 14 8 1 1311 11 0 9

location 0 2 0 8 7 1 1 2 7 1 446 6 12
publr 3 0 0 11 2 8 0 6 8 1 1 319 2
Note 0 1 1 1 2 11 0 0 0 0 0 0 80

TOTAL 5343 4605 596 2300 1579 837 669 362 416 1345 572 363 191
Acc 99.3% 95.6% 64.6% 90.6% 94.6% 80.2% 90.9% 79.8% 84.1% 97.5% 78.0% 87.9% 41.9%

Table 4 Confusion Matrix on output of baseline parsing

 19

An examination of the output shows that errors are often due to sequences of tokens

mistagged as another tag, i.e. all tokens in a sequence are tagged incorrectly as X

when they should be tagged as Y. I define errors of this type as single errors. As to be

explained in section 3.5.4, parses with one repeated field after repairs are also

considered single errors. ParsCit attempts to isolate single errors from the baseline

parse and perform appropriate repairs on them.

Figure 9 below shows an example baseline parse of a single citation with 2 single

errors.

Correctly Annotated Citation:

J . J Koenderink and A . J . van Doorn . Representation of local geometry in the

visual system . Biological Cybernetics , 55 367 - 375 , 1987 .

ParsCit Baseline Parse of the Same Citation:

J . J Koenderink and A . J . van Doorn . Representation of local geometry in the

visual system . Biological Cybernetics , 55 367 - 375 , 1987 .

Single
errors

Figure 9 Correctly annotated citation and its ParsCit baseline parse with single errors

In this section, I shall go into the details of the series of repairs done by ParsCit based

on the output of a baseline parse:

• Repairing of Editors

• Repairing of Bubbles

• Repairing of Repeated Fields (with respect to global context)

3.5.1 Repairing of Editor Field

As derived from M, the baseline parser performs poorly at tagging editor fields in

citations. The ‘editor’ field has a token accuracy of only 64.6%, with 82.5% of its

incorrectly tagged tokens tagged as ‘author’. This is largely due to the similar nature

of these two fields. Also, even though the author field appears as the first field in

citations most of the times, there are citations with the editor field (and no author field

in the citation) appearing as the first field.

 20

Editor names are almost certainly followed by certain cue words in a citation, e.g.

In Bouma , H . , & Elsendoorn , A . G . (Eds .) , Working Models of Human
Perception , pp . 391 - 410 . Academic Press , London , England .

ParsCit attempts to locate these keywords in each citation and do the repairs

according to the repairing algorithm:

Define cue word-tokens set, E as {“ed”, “eds”, “editor”, “editors”}

For each citation,

 Get index i of any word token that belongs to E

 For each token before i (going leftwards from i),

 If token is tagged as author, retag as editor

 Else break

 End for

End for

3.5.2 Repairing of Bubbles

Another problem of the output of a baseline parse is that a small number of tokens are

tagged incorrectly amongst neighboring word tokens which are tagged correctly and

are of the same tag. In this thesis, I define such bounded tokens as bubbles. Following

the same example in Figure 9, tokens ‘in’ and ‘the’ are incorrectly tagged as

‘booktitle’, while their immediate neighboring tokens were all correctly tagged as

‘title’.

Bubbles are errors inherent for taggers for sequence labeling tasks as tokens are

tagged iteratively from left to right. Such bubbles are removed by retagging it with the

same tag as its left and right neighbor tags. ParsCit determines which bubbles to

repair by heuristics based on statistics derived from C. A table of statistics Table 5

below shows the distribution of each field according to its length in tokens in C, and

the proposed bubble size to be repaired.

 21

 Length of Field (less then or equal to)

Field name <=1 <=2 <=3 <=4 >4

Proposed
repair size

(<=)
author 0.00% 0.41% 2.65% 18.57% 81.43% 3
title 0.20% 0.40% 1.41% 4.45% 95.55% 3
editor 0.00% 0.00% 0.00% 0.00% 100.00% 3
booktitle 0.00% 0.43% 5.21% 9.13% 90.87% 2
date 0.00% 31.25% 55.44% 97.17% 2.83% 1
journal 0.60% 8.43% 34.94% 48.19% 51.81% 1
volume 10.99% 39.56% 42.31% 64.29% 35.71% -
tech 1.64% 8.20% 36.07% 42.62% 57.38% 1
institution 0.00% 1.72% 15.51% 31.03% 68.97% 2
pages 1.04% 2.08% 3.46% 51.90% 48.10% 3
location 0.73% 18.98% 29.20% 68.61% 31.39% 1
publisher 0.00% 9.90% 53.46% 90.10% 9.90% 1
note 0.00% 20.00% 46.67% 43.33% 46.67% 1
Table 5 Field lengths and proposed bubble size to be repaired

Using a threshold of 5%, ParsCit attempts to remove bubbles according to the

statistics reflected above. For example, ‘volume’ appears as a single token 10.99% of

the time, ‘volume’ bubbles are not repaired. ‘Booktitle’, on the other hand, rarely has

a field length of less than 3, thus ‘booktitle’ bubbles of token length less than 3 are

retagged by ParsCit.

The baseline parse followed by the repairs discussed thus far makes up the output of

ParsCit’s first iteration.

3.5.3 Repairing of Repeated Fields

It is uncommon to see field repetitions in a line of citation, i.e. a field does not

normally appear as two or more separate chunks in the same line. In C, only 4% of

the citations contain repeated fields. This motivates a re-tagging to remove repeated

fields.

How is this repair done? I consider a novel source of information, previous ignored by

other citation parsers: the citation’s context within a bibliography. Citations appearing

within a single bibliography tend to follow matching styles. As mentioned in Chapter

1, many authors use tools for managing references. As such, citations appearing from

 22

the same paper may follow a set of fixed template. I leverage this property by

attempting to eliminate repeated fields by matching with probable templates. These

probable templates are derived from the first iteration of parsing. A table of keys

below is used for naming templates.

Field Name Key Field Name Key
Author A Tech K
Title T Institution I
Editor E Pages G
Booktitle B Location L
Date D Publisher P
Journal J Note O
Volume V
Table 6 Table of keys of fields

A template for each citation is derived from the parsed output after the various repairs

mentioned have been done. Only templates which do not contain repeated fields are

added to a list of “seen” templates, T. For example, if the citation below

L . G . Valiant . A Bridging Model for Parallel Computation . Communications

of the ACM , 33 (8) , 103 - 111 , 1990 .

is parsed correctly by ParsCit, the template derived would be ATJVGD. With this

template list T, citations which contain one repeated field after parsing are repaired by

choosing a matching template (if available) from T.

Candidate Templates

ADEBTPL

ADTBEPL

ADTPL

 Field 2

Field 1

case 1: ADTBTPL

 Bubble

case 2: ADTBTPL

Figure 10 Templates with one repeated field

 23

A template with one repeated field can hence be repaired in 3 ways:

Case 1:

• Re-tag tokens in Field 1 to tag X if candidate template exists in T

• Re-tag tokens in Field 2 to tag X if candidate template exists in T

Case 2:

• Remove bubble by retagging bubble with the same tag as its neighbor tags, if

this candidate template exists in T

Where there are more than one candidate templates that can be applied, the template

with highest observed frequency is used.

 24

4 Overall Performance Comparison

Adopting a common performance measurement, this thesis defines the following:

A: number of true positive tokens (e.g. ‘author’ tokens tagged as ‘author’)
B: number of false negative tokens (e.g. non-author tokens tagged as ‘author’)
C: number of false positive tokens (e.g. ‘author’ tokens tagged as anything but

‘author’)
D: number of true negative tokens (e.g. non-author tokens tagged as anything but

‘author’)

Token Accuracy = A D
A B C D

+
+ + +

Precision = A
A C+

Recall = A
A B+

F1 = 2 Precision Recall
Precision Recall
× ×

+

Overall Acc.: percentage of tokens whose predicted tag equals their
 true field name

Instance Acc.: percentage of citation lines in which all fields are extracted

correctly

Field Acc.: percentage of total fields which are identified and extracted

successfully in all citations tested

 25

4.1 Evaluation of ParsCit Features

Morivated the success of POS tagging in (Ratnaparkhi, 1998), ParsCit started off with

features F1, F2 and F3 similar to that was mentioned in the thesis. Finalized features

F1 to F19 are then used for the baseline parse of the system. The results of using

different features are shown in Table 7.

Features Token Acc. Average F1 Inst Acc. Field Acc.

Ratnaparkhi POS
Features

90.17% 82.07% 42.60%

82.93%

Lexical + Layout +
Local

92.19%
(+2.2%)

85.37%
(+4.0%)

45.60%
(+7.0%)

84.62%
(+2.0%)

Lexical + Layout +
Local + Dictionary
(baseline)

92.51%
(+2.6%)

85.39%
(+4.0%)

45.60%
(+7.0%)

85.05%
(+2.6%)

Table 7 Performance of ParsCit using different sets of features

In the context of citation parsing, we are concerned with the ability of the system to

extract fields accurately; it is more useful to evaluate the performance by looking at

the field accuracy, rather than token accuracy. As shown in Table 7, there is

significant improvement in field accuracy with the increasing set of features used in

ParsCit.

 26

4.2 Comparison between Methods of Tagging

 HMM CRF ParsCit (baseline)
Overall acc. 73.99% 95.37% 92.51%
Instance acc 4.40% 77.33% 45.6%
 Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)
author 89.9 82.8 99.9 99.4 97.8 96.2
booktitle 92.5 71.2 97.7 93.7 97.7 90.3
date 98.1 88.8 99.8 98.9 99.1 94.7
editor 97.0 40.8 99.5 87.7 98.5 72.8
institution 98.3 53.3 99.7 94.0 99.4 85.9
journal 96.8 59.2 99.1 91.3 98.4 81.3
location 97.8 57.1 99.3 87.2 99.1 83.8
note 98.6 31.0 99.7 80.8 99.3 55.7
pages 96.5 67.9 99.9 98.6 99.5 96.1
publisher 98.7 58.3 99.3 76.1 99.6 88.1
tech 98.6 51.4 99.4 86.7 99.5 85.4
title 90.1 81.1 98.9 98.3 97.9 95.6
volume 97.9 62.5 99.9 97.8 99.4 91.4
Average
F1-measure

62.0

91.5

85.4

Table 8 Extraction results (Accuracy measured in tokens)

Table 8 above shows the experimental results of tagging citations using HMM and

CRF compared to ParsCit’s baseline parse. Ten-fold cross validation to eliminate bias

towards any training set is done on each method of tagging:

• HMM using QTAG

• ME model using opennlp.maxent with ParsCit features F1 to F19

Accuracy values for citations tagged using CRF are taken from a very recent paper

(McCallum and Peng, 2004) also based on the same training set C. However, it can

only be used as a rough comparison as the test was done on 150 randomly chosen

citations, with the remaining 350 used for training.

Out of the 500 citation lines tagged under cross validation, only 22 lines have had all

their fields correctly extracted for a HMM-based citation parser (4.4% instance

accuracy). ParsCit’s baseline parser achieves overwhelming increase in performance

as compared to this method, with an instance accuracy of 45.6%, and has comparable

performance with the CRF method in terms of overall token accuracy.

 27

4.3 Evaluation of ParsCit Repairs

 ParsCit (baseline) ParsCit (repair)
Overall acc. 92.51% 94.20%
Instance acc 45.6% 60.8% (+33.3%)
 Acc (%) F1 (%) Acc (%) F1 (%)
author 97.8 96.2 99.3 98.7
booktitle 97.7 90.3 97.8 90.9
date 99.1 94.7 99.4 96.2
editor 98.5 72.8 98.4 90.9
institution 99.4 85.9 99.5 87.1
journal 98.4 81.3 98.5 82.0
location 99.1 83.8 99.1 83.4
note 99.3 55.7 99.4 59.0
pages 99.5 96.1 99.4 95.9
publisher 99.6 88.1 99.6 89.0
tech 99.5 85.4 99.4 84.5
title 97.9 95.6 98.4 96.7
volume 99.4 91.4 99.5 92.1
Average
F1-measure

 85.4 88.2

Table 9 Performance comparison between baseline parse and repairs

55

60

65

70

75

80

85

90

95

100

au
th

or

bo
ok

tit
le

da
te

ed
ito

r

in
st

itu
tio

n

jo
ur

na
l

lo
ca

tio
n

no
te

pa
ge

s

pu
bl

is
he

r

te
ch tit
le

vo
lu

m
e

F1 (baseline)
F1 (repair)

Figure 11 F1 comparison between baseline parse and repairs

Table 9 above shows a performance comparison of ParsCit System before and after

repair. There is an increase in per-field F1-measure for almost all fields as depicted in

 28

the graphical representation Figure 11. Repairs on the baseline parse gives a

significant improvement of 33.3% in instance accuracy.

58.9% of the citations parsed incorrectly from a ParsCit baseline parse contain only

single errors, which ParsCit is capable of correcting. 449 tokens categorized as single

errors out of 801 (56.1%) were successfully corrected using repairs mentioned in the

previous chapter.

The same set of repairs is done on the baseline parse of the HMM-tagged output on C

to prove its effectiveness. By defining good parses as citations from which at most

one complete field is not extracted correctly, we have the following comparison in

Table 10.

 Field Acc. Instance Acc. Good Parse

HMM

(baseline)

53.7% 4.4% 24.0%

HMM

(repairs)

57.8%

(+7.6%)

6.6%

(+50.0%)

31.0%

(+29.2%)

ParsCit

(baseline)

85.1% 45.6% 78.6%

ParsCit

(repairs)

90.0%

(+5.86%)

60.8%

(+33.3%)

88.0%

(+12.0%)
Table 10 Evaluation of repairs done on HMM and ParsCit baseline

Given the effectiveness of repairs done by the system, it is believed that these repairs

will also improve the performance of a CRF-based citation parser, to gain an

estimated instance accuracy of 85%, when used together with features developed in

this thesis, i.e. out of 20 citations parsed, 17 will have all their fields extracted

successfully.

 29

5 Conclusion and Future Work

ParsCit is an citation parser which eliminates manual effort to hand-annotate citations

of a literature work by using a statistical machine learning technique, maximum

entropy. ParsCit is different from previous citation parsers in that the parsing process

does not require citations to fit into any of a database of fixed templates. To my

knowledge, it is the first citation parser that repairs single errors and leverages of

contextual template information when parsing citations from the same bibliography.

This information is utilized in repairing citations parsed with one repeated field.

I have shown in this thesis the success in the features and repairs incorporated into the

parser, achieving a field accuracy of 89.95%. Due to the nature of the ME model,

ParsCit is also expected to perform with considerable accuracy for citations of various

templates and disciplines, even though the training set is small.

With each citation a bibliography parsed successfully, fields such as ‘authors’, ‘title’ ,

etc. extracted can be used to build a citation database. This process is critical for

citation analysis like citation indexing. A citation index (Garfield, 1979) indexes the

link between the articles published and the cited material. As summarized in

(Lawrence et al, 1998), citation indexing can

“improve scientific communication by revealing relationships between articles,
drawing attention to important corrections or retractions of published work,
identifying significant improvements or criticisms of earlier work, and helping
limit the wasteful duplication of prior research.”

Research paper search engines such as CiteSeer (Lawrence et al, 1998) Cora

(McCallum et al, 2000) provide various detailed analyses based on citation indices,

providing great convenience to researchers. ParsCit, with its flexibility and portability,

allows a database to be built and makes it possible for citation indexing even for a

researcher’s personal use.

Repairs mentioned in this thesis can be employed on similar natural language

processing tasks which demands structures or metadata to be extracted from a

sequence of text. Such tasks include the extraction of various common fields from

headers of research papers, classified ads, etc.

 30

Inherent of all supervised machine learning techniques, a large, labeled training set

helps to improve the performance of ParsCit. A web-based annotation system has

been set up to allow volunteers to hand-annotate a random set of citations to further

expand the existing labeled training dataset. Web spidering techniques may also be

applied to automatically search for literature works from which ParsCit will attempt to

parse. Parses which are deemed to be good will then be appended to its existing

training set.

Additional supporting databases (such as a journal name database, publisher database,

country name database, etc.) can also be collected to help the system identify and

extract fields.

 31

References

Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. (1998). Exploiting
Diverse Knowledge Sources via Maximum Entropy in Named Entity
Recognition. In Proceedings of the Sixth Workship on Very Large Corpora.

Cameron R. D., (1997). A Universal Citation Database as a Catalyst for Reform in

Scholarly Communication. First Monday. Vol. 2, No. 4.

Darroch, J. N. and Ratcliff, D. (1972). Generalized Iterative Scaling for Log-linear

Models. Annals of Mathematical Statistics, Vol.43, No.5, pp. 1470-1480.

Garfield, E. (1979). Citation Indexing: Its Theory and Application in Science,

Technology, and Humanities.

Huang, I.A., Ho, J.M., Kao, H.Y. and Lin, W.C. (2004). Extracting Citation Metadata

from Online Publication Lists Using BLAST.

Jewell, M. (2002). ParaCite: An Overview.

Lafferty, J., McCallum, A., Pereira, F. (2001). Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data. In
Proceedings of International Conference on Machine Learning, pp. 282-289

Lawrence, S., Giles C. L. and Bollacker K. D. (1998). CiteSeer: An Automatic

Citation Indexing System. Digital Libraries 98 - Third ACM Conference on
Digital Libraries, pp. 89-98.

Lawrence, S., Giles C. L., and Bollacker K. D. (1999). Distributed Error Correction.

Fourth ACM Conference on Digital Libraries.

McCallum, A., Nigam, K., Rennie, J. and Seymore, K. (2000). Automating the

Construction of Internet Portals with Machine Learning. Information Retrieval
Journal Vol.3, pp. 127-163.

McCallum, A. and Peng, F. (2004). Accurate Information Extraction from Research

Papers using Conditional Random Fields.

Nigam, K., Lafferty, J., McCallum, A. (1999). Using Maximum Entropy for Text

Classification.

Oren Patashnik (1988) BibTeXing

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition. Proceedings of the IEEE 77, pp. 257-286.

 32

Ratnaparkhi, A. (1996). A Maximum Entropy Model for Part-Of-Speech Tagging. In
Conference on Empirical Methods in Natural Language Processing, University
of Pennsylvania, pp. 133-142.

Ratnaparkhi, A. (1998). Maximum Entropy Models for Natural Language Ambiguity

Resolution.

Reynar, J. C. and Ratnaparkhi, A. (1997). A Maximum Entropy Approach to

Identifying Sentence Boundaries.

 33

Appendix A

A1 – Sample from Training dataset C’

<start>_<start> A_author%HEAD ._author%BODY Cau_author%BODY ,_author%BODY
R_author%BODY ._author%BODY Kuiper_author%BODY ,_author%BODY
and_author%BODY W_author%BODY ._author%BODY -_author%BODY
P_author%BODY ._author%BODY de_author%BODY
Roever_author%BODY ._author%TAIL Formalising_title%HEAD Dijkstra_title%BODY
'_title%BODY s_title%BODY development_title%BODY strategy_title%BODY
within_title%BODY Stark_title%BODY '_title%BODY s_title%BODY
formalism_title%BODY ._title%TAIL In_editor%HEAD C_editor%BODY ._editor%BODY
B_editor%BODY ._editor%BODY Jones_editor%BODY ,_editor%BODY
R_editor%BODY ._editor%BODY C_editor%BODY ._editor%BODY
Shaw_editor%BODY ,_editor%BODY and_editor%BODY
T_editor%BODY ._editor%BODY Denvir_editor%BODY ,_editor%BODY
editors_editor%BODY ,_editor%TAIL Proc_booktitle%HEAD ._booktitle%BODY
5th_booktitle%BODY ._booktitle%BODY BCS_booktitle%BODY -_booktitle%BODY
FACS_booktitle%BODY Refinement_booktitle%BODY
Workshop_booktitle%BODY ,_booktitle%TAIL 1992_date%HEAD ._date%TAIL
<end>_<end>

<start>_<start> M_author%HEAD ._author%BODY
Kitsuregawa_author%BODY ,_author%BODY H_author%BODY ._author%BODY
Tanaka_author%BODY ,_author%BODY and_author%BODY
T_author%BODY ._author%BODY Moto_author%BODY -_author%BODY
oka_author%BODY ._author%TAIL Application_title%HEAD of_title%BODY
hash_title%BODY to_title%BODY data_title%BODY base_title%BODY
machine_title%BODY and_title%BODY its_title%BODY
architecture_title%BODY ._title%TAIL New_journal%HEAD Generation_journal%BODY
Computing_journal%BODY ,_journal%TAIL 1_volume%HEAD (_volume%BODY
1_volume%BODY)_volume%BODY ,_volume%TAIL 1983_date%HEAD ._date%TAIL
<end>_<end>

<start>_<start> Alexander_author%HEAD Vrchoticky_author%BODY ._author%TAIL
Modula_title%HEAD /_title%BODY R_title%BODY language_title%BODY
definition_title%BODY ._title%TAIL Technical_tech%HEAD Report_tech%BODY
TU_tech%BODY Wien_tech%BODY rr_tech%BODY -_tech%BODY 02_tech%BODY -
_tech%BODY 92_tech%BODY ,_tech%BODY version_tech%BODY
2_tech%BODY ._tech%BODY 0_tech%BODY ,_tech%TAIL
Dept_institution%HEAD ._institution%BODY for_institution%BODY
Real_institution%BODY -_institution%BODY Time_institution%BODY
Systems_institution%BODY ,_institution%BODY Technical_institution%BODY
University_institution%BODY of_institution%BODY
Vienna_institution%BODY ,_institution%TAIL May_date%HEAD
1993_date%BODY ._date%TAIL <end>_<end>

 A-1

A2 – Legend for Fields

author title editor booktitle date
journal volume tech institution pages
location publisher note

Field Color/Font
author red
title bold
editor yellow
booktitle black italics
date gray
journal silver
volume blue
tech olive
institution maroon
pages black
location green
publisher brown
note orange

Project Information

Project Type : Honours Year Project

Project Area : Software Systems

Project Title : Citation Parsing Using Maximum Entropy and Repairs

Project No : H79040

Student’s Name : Ng Yong Kiat

Project Advisor : Assistant Professor Kan Min-Yen

Date of Completion : November 2004

Deliverables : Report 1 Volume

Implementation
Software and
Hardware

: DELL PC Intel Pentium 4 CPU 1.60GHz with 256 MB RAM,
Windows XP, Perl, HTML, Java, MAXENT Package, pdftotext
from Xpdf

Abstract
This thesis presents ParsCit, a system which parses citations from a publication or article,

and label parts of citations with their corresponding field names. As citation styles differ

between disciplines, publishers and authors, the task of citation parsing is difficult and

inherently ambiguous. Whereas traditional citation parsers use a manually compiled set

of rules to perform parsing, ParsCit adopts the framework of machine learning, learning

rules for parsing from annotated data. A maximum entropy framework is employed to

create a basic citation parse, and a series of repairs is performed to improve system

accuracy. Given as few as 500 training examples, ParsCit is able to achieve a token

accuracy of 94.20%, comparable to related machine learning approaches which lack the

use of features applicable to the context of citation parsing. In this paper, I shall also

emphasize the efficiency of the system’s set of repairs, which is absent in citation parsers

seen to date.

Subject Descriptors:

I.2.6 Learning

I.2.7 Natural Language Processing

Keywords:

 Text processing, Maximum Entity, Citation Parser

	2.1 Template Matching Approach: ParaTools
	2.2 Machine Learning Based Citation Parsing Techniques
	2.3 Maximum Entropy Modeling
	2.4 Machine Learning Approach under the ME Framework
	3.1 ParsCit System Features
	3.2 Preprocessing of Training Set
	3.3 Creating a Maximum Entropy Model
	3.4 Baseline Tagging based on ME Model
	3.5 Repairs on the output of ParsCit’s Baseline Parse
	3.5.1 Repairing of Editor Field
	3.5.2 Repairing of Bubbles
	3.5.3 Repairing of Repeated Fields

	4.1 Evaluation of ParsCit Features
	4.2 Comparison between Methods of Tagging
	4.3 Evaluation of ParsCit Repairs
	A1 – Sample from Training dataset C’
	A2 – Legend for Fields

