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Abstract 
 
This thesis presents ParsCit, a system which parses citations from a publication or 

article, and label parts of citations with their corresponding field names. As citation 

styles differ between disciplines, publishers and authors, the task of citation parsing is 

difficult and inherently ambiguous. Whereas traditional citation parsers use a 

manually compiled set of rules to perform parsing, ParsCit adopts the framework of 

machine learning, learning rules for parsing from annotated data. A maximum entropy 

framework is employed to create a basic citation parse, and a series of repairs is 

performed to improve system accuracy. Given as few as 500 training examples, 

ParsCit is able to achieve a token accuracy of 94.20%, comparable to related machine 

learning approaches which lack the use of features applicable to the context of citation 

parsing. In this paper, I shall also emphasize the efficiency of the system’s set of 

repairs, which is absent in citation parsers seen to date. 
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1 Introduction 

In the scholarly communities, citations are a key part of linking discrete pieces of 

knowledge into a well-structured record of a field’s advancement. Although citations 

can come in many forms, a common standard places a reference to each paper, article 

or book used by the authors, in a separate section of the work.  This list, often known 

as a bibliography, acts as an acknowledgement to these materials and provides exact 

publication information to identify each source and allow a reader to locate it for 

further study. Figure 1 below shows an example of a bibliography from a research 

paper. 
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igure 1  Bibliography 

ndividual references have internal structure: the title, author, publication venue and 

ate are all distinct fields. When writing, most authors manage references in a 

tructured format, using tools such as BibTeX (Patashnik, 1988) and EndNote®1 to 

ort, list and format the reference data. Figure 2 below shows an example entry in a 

ibTeX. Once the bibliography is converted to textual string in the publication using 

uch tools, the explicit internal structure of each reference is lost (as in Figure 1). A 

everse engineering procedure is required to infer the individual fields from each 

eference.  

                                                
 EndNote® by Thomson ResearchSoft. http://www.endnote.com 
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Figure 2  Example of a BibTeX entry 
 

ParsCit’s objective is to recover this structure.  It performs this process of citation 

parsing by examining each reference and identifying which field each token belongs 

to. Figure 3 shows a sample output of a single citation parsed by ParsCit. The 

extracted fields from each reference can then be used directly by another author.  

More importantly, the recovery of the internal structure of references is mandatory for 

various bibliometric analyses and citation indexing. 

 

 
F
 

 

--------------------------------------------------------------------------------------------------- 
[1] J . F . Allen , Maintaining knowledge about temporal intervals , Comm . ACM     
26 ( 11 ) ( 1983 ) 832 - 843 . 
--------------------------------------------------------------------------------------------------- 
AUTHOR: 
J . F . Allen 
 
TITLE: 
Maintaining knowledge about temporal intervals 
 
DATE: 
( 1983 ) 
 
JOURNAL: 
Comm . ACM 
 
VOLUME: 
26 ( 11 ) 
 
PAGES: 
832 - 843 . 
@InProceedings{ bollacker98citeseer, 
  author        = "Kurt Bollacker and Steve Lawrence and C. Lee Giles", 
  title         = "{CiteSeer}: An Autonomous Web Agent for Automatic Retrieval 
and Identification of Interesting Publications", 
  booktitle     = "Proceedings of the Second International Conference on 
Autonomous Agents", 
  editor        = "Katia P. Sycara and Michael Wooldridge", 
  publisher     = "ACM Press", 
  address       = "New York", 
  pages         = "116-123", 
  year          = "1998" 
}   
 

igure 3  Sample output from ParsCit  
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Automatic extraction of the structure in references has been achieved only in recent 

years, but manual effort is still largely required.  ParaTools (Jewell, 2002) is a 

software module that performs this task using rigid predefined citation styles. It is 

thus limited in portability and achieves limited accuracy. CiteSeer (Lawrence, 1998)  

does citation parsing by using heuristics and probabilistic models that also requires 

manual data collection: the method requires the manual collection of a large database 

of author names and journal names to identify reference fields. To correct system 

errors, CiteSeer employs Error Distribution Correction (Lawrence, 1999), allowing 

users to provide correction to any fields of a publication. Again, this involves manual 

supervision. 

 

There have also been centralized attempts at creating unambiguous references by 

means of having a standard format. In (Cameron, 1997), Cameron proposed a 

universal citation database that required citations in a standardized format.  This 

would negate the need for citation parsing. However, this meant that all authors would 

have to conform strictly to the citation formats, and the concept did not gain much 

acceptance.  I believe that any centralized approach is bound to fail as individuals 

often make mistakes or may want to present their references differently than others.   

 
In the next chapter, I shall touch on works related to citation parsing. In Chapter 3, I 

detail the ParsCit algorithm, which is the core contribution of my research. A detailed, 

comparative evaluation of ParsCit follows in Chapter 4. I conclude with an 

examination of applications and areas of future work in Chapter 5. 
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2 Related Works 

The problem of citation parsing has been the focus of past research initiatives, as 

documented in the literature.  I shall examine existing citation parsers, which can be 

generally divided into two categories: template matching and machine learning based 

approaches.   

 

2.1 Template Matching Approach: ParaTools   

A template matching approach takes an input citation and matches its syntactic pattern 

against known templates. The template with the best fit to the input is then used to 

label the citation’s tokens as fields. The canonical example of a template based 

approach is ParaTools (short for ParaCite Tools), released by the University of 

Southhampton as part of its larger citation indexing project.  ParaTools is a set of Perl 

modules that parses references into component fields using template matching.  

  

This technique works fairly well for citations which adhere to simple citation patterns, 

but is susceptible to errors when it tries to extract fields from citations with many 

punctuations, since there may be multiple templates that fit equally well.  If the wrong 

template is chosen, entire fields will be tagged incorrectly. As references can be 

parsed accurately only if their citation style resides among the existing templates, any 

template based approach is limited by the coverage of its templates.  This is the case 

with ParaTools. While ParaTools contains 400 templates, my experiments with the 

system show that even this large amount manifests coverage problems. While users 

may choose to add new templates to ParaTools manually, the process is cumbersome 

and there might be indefinitely many styles for citing different material. The fact that 

authors may not strictly adhere to citation styles also diminishes any efforts to 

improve template matching techniques by template mining. 

 

A further weakness of ParaTools is that it tags certain fields as ambiguously as “Any” 

as seen in Figure 4. Tagging a token as “Any” is equivalent to not tagging the token in 

any field, and while it simplifies the problem for ParaTools, places more burden on 

human annotators and post-processing editing.   
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Authors : M. Kitsuregawa, H  

Title  : Tanaka, and T 

Publication : Moto-oka 

Any  : Application of hash to data base machine and its architecture 

Any  : New Generation Computing, 1(1) 

Year  : 1983 

Figure 4  Sample output of a citation parsed by ParaTools 
 

A recent thesis (Huang, Ho, Kao and Lin, 2004),reported ParaTool’s precision as 

approximately 30%. In my view, this low level of performance and lack of portability 

make the approach unsuitable for doing post-parsing processing, such as citation 

indexing (Garfield, 1979).   

 

2.2 Machine Learning Based Citation Parsing Techniques 

The limitations of the template-based approach have encouraged researchers to try 

alternative models for citation parsing.  The remaining approaches that I will survey 

are all examples of machine learning approaches. Given sufficient training data, a 

machine-learned parser can produce high performance in accuracy, regardless of 

citation styles. 

 

Hidden Markov Models (HMMs) are a powerful probabilistic tool and has been 

applied extensively on various language related tasks. HMMs are a finite state 

automaton with stochastic state transitions and symbol emissions (Rabiner, 1989). 

Associated with each set of states, 1 2{ , ,..., }nS s s s= is a probability distribution over 

the output symbols , in the emission vocabulary. The probability 

that state s

1 2{ , ,..., }nV w w w=

i will emit the symbol w is . Similarly, associated with each state is 

a distribution over its set of outgoing transitions. The probability of transiting from 

state s

( | )iP w s

i-1 to si is then . A dynamic programming solution called the Viterbi 

algorithm is used to find the most likely state sequence given a Hidden Markov Model 

M and a sequence of symbols, This algorithm has a time complexity of O(TN

1( | )i iP s s −

2), where 

T is the length of the sequence and N is the number of states in M.  
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HMMs may be used for citation parsing by formulating a model in the following way: 

each state is associated with a citation field name (hereby called “tag”) such as title, 

author or date. A labeled training dataset is first used to train a HMM. This model is 

then used to recover the most-likely state sequence that produces the sequence of 

observation symbols (i.e. the word tokens of a citation). For example, a sequence of 

symbols: 

 

 

Steve Lawrence . ( 1999 ) Digital libraries and Autonomous Citation Indexing . 

 may have the most likely state sequence: 

 

 

author author author date date date title title title title title title title 

While HMMs models the  and tw x↔ t 1t ts s↔ +  relationships as depicted in Figure 5, 

the modeling of relationships  are not permitted. In another words, we cannot 

use several  to predict as the Markovian assumption states that the emission 

and the transition probabilities depend only on the current state. 

tV s↔

'tw s ts

 

 
Figure 5  Relationships between states and output symbols in a HMM 

 

In (McCallum and Peng, 2004), a HMM is used to train on labeled training citation 

data provided from the now-defunct Cora publication service. Citations are then 

parsed by using the trained model to label each word token of a citation. McCallum 

reports an overall accuracy of 93.1% for the HMM based parser. Despite of 

significant success in various sequence labeling tasks such as Part-of-Speech (POS) 

tagging (Ratnaparkhi, 1996) and predicting protein sequence labeling, the HMM 
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method is less effective due to its assumptions of independent and non-overlapping 

features.  

 

In the same paper, McCallum also examined the use of Conditional Random Fields 

(CRF) model to parse citations in another experiment. CRFs are undirected graphical 

models trained to maximize a conditional probability (Lafferty, McCallum and 

Pereira, 2001) and have been applied on tasks such as name entity extraction. A 

citation parser based on a CRF model outperforms one that is based on HMM, 

boosting overall accuracy to 95.37%.  However training time is a concern, as CRFs 

converge slowly. It requires approximately 500 iterations for the model based on the 

same training set to stabilize.  

 

In view of the above drawbacks and the absence of any well-documented CRF 

packages, I pursued another machine learning model.  The Maximum Entropy Model 

provides flexibility given sufficient training datasets and serves as a balance between 

the two mentioned machine learning models. 

 

Table 1 below summarizes the pros and cons of the various techniques discussed. 

(Characteristics on the last 2 columns shall be explained in full detail in the next 

chapter) 

 

 Portability Package 
Avail. 

Training 
Time 
(for 350 
lines) 

Word 
Accuracy 

Repeated 
Fields 

Takes 
Global 
Context  
into 
Account  

ParaTools Cumber-
some 

Open 
Source 
(Perl) 

Not 
Required 

~ 30% No No 

HMM  Yes QTAG2 
(Java) 

< 1 sec 
 

~ 93% Yes No 

CRF 
Model 

Yes Not 
Available 

500 
iterations 

~ 95% Yes No 

ME 
Model 

Yes MAXENT3

(Java) 
--- --- Yes No 

Table 1  Table of pros and cons of various approaches 
 
 

                                                 
2  QTAG 3.1 by Mason, O. http://web.bham.ac.uk/O.Mason/
3  opennlp.maxent Package version 2.3.0. http://maxent.sourceforge.net 
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2.3 Maximum Entropy Modeling 

The model used for parsing in ParsCit is based on the maximum entropy model. 

Using this model, Ratnaparkhi obtained state-of-the-art accuracy of 96.6% in POS 

tagging (Ratnaparkhi, 1996). Since then, maximum entropy techniques have widely 

used for natural language tasks such as identifying sentence boundaries (Reynar and 

Ratnaparkhi, 1997) and text classification (Nigam, Lafferty and McCallum, 1999).  

 

Maximum entropy (ME) is a probability distribution modeling technique. The 

principle of ME modeling is to model all that is known and assume nothing about 

which is unknown. In other words, given a training dataset, choose a model consistent 

with all the constraints, but otherwise as uniform as possible. 

 

ME is used commonly to solve classification problems, in which the objective is to 

estimate a classification function , which maps an object :cl X Y→ x X∈  to its 

correct class y . X consists of words or sentences and Y is the predefined set of 

classes. Given a sentence of n words, we define x

Y∈

∈{the n-word sentence}. POS 

tagging is the process of predicting a sequence of n tags corresponding to the sentence, 

where x∈Tn and T are the allocable POS tags for a word. This is a typical example of 

sequence tagging. Such complex problems are decomposed into a sequence of simpler 

classification problems by having a classifier predict the class for each object x. Since 

tags are predicted in sequence in POS, a classifier can exploit the previously predicted 

n-1 tags to predict the nth tag of the nth word.    

 

In ME, the classification function is implemented with a conditional probability 

model p by choosing the class with the highest conditional probability:  

( ) arg max ( | )
y

cl x p y x=  

Similarly, probability models can implement a complex classifier  for 

sequence tagging: 

: n ncl X Y→

1
1 11 ... 1

( ... ) arg max ( | ... , ... )
n

n

i n in y y i

cl x x p y x x y y −

=

= ∏ 1  

where x1…xn, y1…yi-1, informally called the “context” or “history”, is the textual 

material available for predicting the class for the ith object. Under the ME framework, 

 8



 

the probability for a class y and object x depends solely on “features” that are active 

for the pair (x, y). A predefined feature is defined as a function , i.e. 

this feature is either active or inactive. Features are the means through which 

problem-specific information is added to the ME model. They encode information 

deemed useful in classifying the objects. The importance of each feature is 

determined automatically by a parameter estimation algorithm over a pre-classified 

dataset (to be explained in the next section).  

: ( , ) {0,1}f X Y →

 

Functions known as contextual predicates are used in features. If  

represents the set of possible classes in the ME model and B represents the set of 

possible textual material that we can observe, then a contextual predicate is 

represented as the function 

1{ ... }nA a a=

: { ,cp B true false→ } 

which returns either true or false, corresponding to the presence or absence of useful 

information in some context . Features are hence functions of the form b B∈

f : A x B  {0, 1} 

As such, features will have the form 

 

     

1 if a = a’ and cp(b) = true 
0 otherwise 

, '( , )cp af a b =

 

2.4 Machine Learning Approach under the ME Framework 

In the machine learning approach, evidence required to make classifications of an 

object can be combined by weighting the features appropriately. With a training 

corpus 1 1{( , )...( , )}n na b a bτ = , each tuple ( ,  is a pair of contextual feature b  with 

its respective correct class a , the weight of each feature can be derived from the log-

linear model (Ratnaparkhi, 1998): 

)i ia b i

i

( ) 1

1 ( , )( | )
k

j
j

j

f a bp a b
Z b

α
=

= ∏     (2.1) 

 

where k is the number of features and ( )Z b  is a normalization factor (2.2) used to 

ensure that .  ( | ) 1p a ba =∑
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( , )

1

( ) j
k

f a b
j

a j

Z b α
=

=∑∏      (2.2) 

Parameter jα  in the model is a non-negative weight to its corresponding feature jf . 

The probability ( | )p a b  is then a product of the weight of features that are present (or 

“active”), i.e. features jf  such that ( , ) 1jf a b = , normalized over ( )Z b . Since the 

objective of ME is to maximize the uncertainty (hence the name maximum entropy) 

so as to get a model assumes nothing about which is unknown, ME maximizes 

{ , }, {0,1}

( ) ( , ) log ( , )
a x y b

H p p a b p a b
∈ ∈

= − ∑  

the entropy averaged over τ  while keeping to constraints the model. 

 

Given k features, each constraint has the form 

{ , }, {0,1}

( , ) ( , )p j j

a x y b

E f p a b f a b
∈ ∈

= ∑  

in which  is the expectation of feature p jE f jf  for model p.  

 

In classification problems, we are interested in predicting the class of an object, given 

observations and evidence. Hence, the goal is to find an estimate for the conditional 

probability ( | )p a b . Under ME, Ratnaparkhi (1998) in his thesis gives the optimal 

solution, *p , which is the most uncertain distribution that satisfies the k constraints on 

the feature expectations such that: 
*

,

,

,

,

arg max ( )

( ) ( ) ( | ) log ( | )

{ | {1... }}
( , ) ( , )

( ) ( | ) ( , )

p P

a b

p j p j

p j j

a b

p j j

a b

p H p

H p p b p a b p a b

P p E f E f j k
E f p a b f a b

E f p b p a b f a b

∈
=

= −

= = =

=

=

∑

∑

∑

 

where p jE f  denotes the observed expectation of a feature jf , ( , )p a b denotes the 

observed probability of (a, b) in a fixed training set, and P denotes the set of 

probability models consistent with the observed evidence. 
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Generalized Iterative Scaling (GIS) algorithm (Darroch and Ratcliff, 1972) can then 

be used to compute the weights 1... 2α α  of the probability distribution *p . 

 

The use of ME in citation parsing is motivated by its claim of accuracy, knowledge-

poor features and reusability. Ratnaparkhi’s thesis (Ratnaparkhi, 1998) provided 

experimental support for state-of-the-art accuracy in various natural language 

processing tasks. It is also mentioned that feature sets used “rely less on linguistic 

knowledge, preprocessing, or semantic databases than competing approaches”. Hence, 

it is a candidate for a machine learning based citation parser, given an appropriate set 

of predefined features which contains contextual information. Besides, the fact that 

the model assumes nothing apart from a given set of constraints, a citation parser built 

upon this framework should also perform reasonably well for citations from different 

disciplines, even if the training set is small.  

 

Tasks such as sequence labeling problems benefit from a richer representation of 

observations, in particular a representation that describes observations in terms of 

overlapping features. While Hidden Markov Model is unable to represent overlapping 

features, the ME model is adequate in this aspect.   

 

Maximum Entropy Model has its drawbacks as well. As with other machine learning 

models, we cannot easily represent that states (fields) cannot be repeated after 

appearing once in a parse sequence.  In other words, the maximum entropy model 

occasionally repeats fields which are only allowed to appear once in a citation (as 

depicted in Table 1). For example, the citation: 

 

 
“Stuart, A., 1984. The Ideas of Sampling., Charles Griffen, London .” 

 

when parsed by a machine learner may have both “Stuart, A.” and “Charles Griffen” 

labeled as ‘author’ when the latter should be properly labeled as ‘publisher’. This is a 

common problem of most machine learning approaches to citation parsing. Since 

fields generally do not repeat in the citations, such errors can be easily detected. 
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3 ParsCit System Architecture 

Annotated 
Citations 
(training 
dataset)

Preprocessing 
and Feature 
Generation

Literature to 
be Parsed

ME 
Modeling

Bibliography 
Extractor

Baseline 
Parsing

Repairs

Templates 
Extraction

Repair 
Repeated 

Fields

Final Output:
Extracted Fields of each 
Citation in Bibliography

Feature 
Generation

 
Figure 6  System Flow of ParsCit 
 
Figure 6 shows the flow of the ParsCit system. This chapter will go into the 

explanation of each step.  The main contribution of this work is twofold: the selection 

of features used in the context of citation parsing and the repairs done on a baseline 

parse in section 3.5. This set of repairs, which distinguishes ParsCit from other 

 12



 

citation parsers, shows considerable improvement in accuracy as evaluated in Chapter 

4. 

 

3.1 ParsCit System Features 

Features F1 to F19 used in training and testing by ParsCit are specific to the context 

of citation parsing. The features can be classified into the following categories: 

 
• Lexical Features 

These features observes the morphological features of the current token and 

that of its surrounding tokens 

 

• Layout Features 

Features which observe  

o position of token relative to the entire line of the current citation 

o special characteristics of surrounding tokens 

o tags of surrounding tokens 

 

• Local Features 

Features which are derived from the current token. These features observes 

certain characteristics of the current token. 

 

• Dictionary Features 

Features used to indicate if the current token belongs to any of the dictionaries 

incorporated into ParsCit. The vocabulary includes keywords or tokens 

deemed as useful in predicting the tags. Table 2 below shows the dictionary 

used in ParsCit. A database of 97900 male names, female names and last 

names from various languages gathered from various sources4 are used in the 

IsName feature. 

                                                 
4 Names from various sources: 
 ftp://ftp.funet.fi/pub/doc/dictionaries/DanKlein/

http://www.census.gov/genealogy/names/
http://www.geocities.com/Tokyo/3919/atoz.html
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Table 2 below lists all the System Features in ParsCit. 
 
Set Feature Conditions and Examples 

Lexical 
F1 Pre1, Pre2… Pre4 

Suf1, Suf2… Suf4 
Prefix and suffix of the current token. 
For a word token ‘Artificial’, features 
Pre1=A 
Pre2=Ar 
Pre3=Art 
Pre4=Arti  
Suf1=l 
Suf2=al 
Suf3=ial 
Suf4=cial 
are generated 

Layout 
F2 Wi-2, Wi-1, Wi, Wi+1, Wi+2 Wi-1 as previous token, Wi as current 

token, Wi+1 as next token 
F3 TV, TVV, TVVV, TVVVV Tags of previous tokens 
F4 FieldV, FieldVV, FieldVVV Fields prior to the current token. 

For a token currently at the 4th field in a 
citation, with the first 3 fields ‘author’, 
‘date’, ‘title’, 
FieldV=title 
FieldVV=datetitle 
FieldVVV=authordatetitle 

F5 Posn The position, ranging from 1 to 10, of a 
token relative to the line of citation is 
calculated.  
Given a 3rd token of a 5 token citation 
line, Posn=6 for this token 

F6 BoundV Previous token is a potential field 
boundary (ie the tokens ‘,’,  ‘.’,  ‘;’) 

F7 (Pre 
)Next 

Previous token is ‘(‘  
Next token is ‘)’ 

F8 NumPre 
NumNext 

Previous token is a number. 
Next token is a number 

F9 PunctPre 
PunctNext 

Previous token is a punctuation 
Next token is a punctuation 

F10 /Pre,      /Next Previous token is ‘/’ 
Next token is ‘/’ 

Local 
F11 Year 

 
 

Contains a 4-digit number in the form 
18XX, 19XX, or 20XX. 
e.g. ‘1999a’, ‘1999b’ 

F12 1DigNum, 2DigNum, 
3DigNum, 4DigNum 

Current token is a 1-digit number, 2-
digit number, 3-digit number or 4-digit 
number 

F13 ContainsDIG Contains numerical digits 
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e.g. ‘4th'  
F14 OneCap Is a single capital letter. 

e.g. ‘A’, ‘K’ 
F15 InitCap 

 
AllCaps 

Begins with a capital letter. 
e.g. ‘Proceedings’ 
All capital letters 
e.g. ‘IEEE’ 

Dictionary 
F16 MonthName Current token is a month name 

e.g. ‘January’, ‘Jan’ 
F17 IsName Current token is a name or last name 
F18 EdKeys Current token is a keyword common in 

‘editor’ fields.  
e.g. ‘Ed’, ‘edited’ 

F19 PgKeys Current token is a keyword common in 
‘page’ fields 
e.g. ‘pp’, ‘page’, ‘pg’, ‘-’ 

Table 2  Features used in ParsCit 
 
 

3.2 Preprocessing of Training Set 

ParsCit’s system training requires an existing corpus of correctly tagged citations. The 

dataset, hereby defined as C, used in ParsCit was created by the Cora project 

(McCallum, Nigam, Rennie and Seymore, 2000). C is a dataset of 500 correctly 

tagged citations, made up of a total of 12,153 word tokens. The 13 tags used in this 

dataset are: author, title, editor, booktitle, date, journal, volume, tech, institution, 

pages, location, publisher and note. ParsCit uses the same set of 13 tags in its 

implementation for citation parsing for ease of comparison with previous work. A 

sample of tagged citations from C is shown in  Figure 7.  
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 Figure 7  Sample of tagged corpus from Cora dataset 

<author> A. Cau, R. Kuiper, and W.-P. de Roever. </author> <title> Formalising 
Dijkstra's development strategy within Stark's formalism. </title> <editor> In C. B. 
Jones, R. C. Shaw, and T. Denvir, editors, </editor> <booktitle> Proc. 5th. BCS-
FACS Refinement Workshop, </booktitle> <date> 1992. </date> 
 
<author> M. Kitsuregawa, H. Tanaka, and T. Moto-oka. </author> <title> 
Application of hash to data base machine and its architecture. </title> <journal> 
New Generation Computing, </journal> <volume> 1(1), </volume> <date> 1983. 
</date> 
 
<author> Alexander Vrchoticky. </author> <title> Modula/R language definition. 
</title> <tech> Technical Report TU Wien rr-02-92, version 2.0, </tech> 
<institution> Dept. for Real-Time Systems, Technical University of Vienna, 
</institution> <date> May 1993. </date> 

 

 

Dataset C has to be preprocessed in order obtain features required to create a ME 

model. The procedures to do this are as follows: 

• Tokenize C 

• Append correct tag to each token accordingly (including punctuations) to form 

(token, tag) pairs 

• Add <start> and <end> tokens to each citation  

 

First, C is tokenized so that punctuations are separated as tokens by themselves; 

otherwise, ‘1993’ and ‘1993.’ would be treated as two different tokens. The citations 

are re-tagged such that each token is followed by its corresponding tag, forming 

(token, tag) pairs. I employ a chunk-based technique used for tagging each token 

similar to that was used for Named Entity Recognition in (Borthwick, Sterling, 

Agichtein and Grishman, 1998). For any particular tag among the 13, take for 

example ‘author’, a token could be in any of the four states:  

• author%HEAD 

• author%BODY 

• author%TAIL 

• author%SOLO  

where I define the trailing ‘HEAD’, ‘BODY’, ‘TAIL’ and ‘SOLO’ as chunk- 

descriptors. Instead of using 13 tags to define the citation fields, an extended set of 52 

 16



 

tags is used as seen in Figure 8. For example, during system training, an entire ‘page’ 

field  

 

 
<pages> pp. 168–175 </pages> 

 

from C will be re-tagged as  

 

 

pp_pages%HEAD ._pages%BODY 168_pages%BODY -_pages%BODY 
175_pages%TAIL 

 

Fields that contain only a single word token will be retagged with “%SOLO” 

appended to the field name. The training dataset after the preprocessing procedures is 

defined as C’ (please refer to Appendix B – Sample from Training dataset C’). 

Finally, a ‘<start> <start>’ pair is then added before the first token of each citation to 

indicate the beginning of the citation and a ‘<end> <end>’ pair appended to the end of 

it. C’ now consists of a dataset of citations in the form of (token, tag) pairs. 

 

 

author 

title 

editor 

booktitle 

date HEAD 
journal BODY 

Χ volume TAIL 
tech SOLO 

institution 

pages 

location 
Chunk-descriptors publisher 

note 

Figure 8  Extended set of 52 tags used for system training 
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3.3 Creating a Maximum Entropy Model 

Features from annotated citations in the form of (token, tag) tuples are generated from 

C’. For each word token in C’, features listed as in Table 2 are generated.  

 

For the token ‘Software’ in the following annotated citation line in C’, 

 

Ostroff , J . S . , " Temporal Logic for Real - Time Systems " , Advanced 
Software Development Series , England , 1989 . 

 
Note: annotated citations in this thesis will hereafter be “color-font-coded” for easier 
viewing. Please refer to Appendix B – Legend for Fields 

some of the features generated for the token ‘Software’ are listed in the following 

table: 

Features Generated for ‘Software’ Explanation 
Pre1=S Pre2=So Pre3=Sof Pre4=Soft 
Suf1=e Suf2=re Suf3=are Suf4=ware 

Its lexical features 

Wi-1=Advanced Wi=Software 
Wi+1=Development 

The surrounding words 

TV=booktitle%HEAD 
TVV=title%TAILbooktitle%HEAD 

The previous two tags 

FieldV=author FieldVV=authortitle ‘Software’ is in the 3rd field. Its previous 
fields are ‘author’ and ‘title’ 

Posn=7 19th token out of 26 total tokens gives a 
position of value 7 

Table 3  Features generated for the annotated citation.  See Table 2 for feature descriptions. 
 

A training file consisting of pairs of features and the correct tag associated with each 

pair is then used for training. ParsCit uses an open source package, opennlp.maxent 

(Baldridge, Morton, Bierner and Friedman, 2001) to create a probability model *p  

based on this training file.  

 

GIS is used to find optimal weights. The time complexity of each iteration is O(N P 

A), where N is the training set size, P is the number of predictions, and A is the 

average number of features active for each prediction. The number of iterations used 

for ParsCit’s training is set at 100 since using more iteration produces only minute 

accuracy gains. 
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3.4 Baseline Tagging based on ME Model 

A similar feature generation for each word token is done for the process of citation 

parsing. The only difference is that features F3 and F4 are dependent on the 

predictions made for previous tokens. In the example above, given that the previous 

token ‘Advanced’ is tagged as ‘booktitle%HEAD’, feature ‘TV=booktitle%HEAD’ 

would have been appended to features corresponding to the token ‘Software’ when 

ParsCit is tagging ‘Software’. Since ParsCit does tagging token by token from left to 

right, F3 and F4 for each test token are created on the fly. 

 

After each token is tagged using the probability model trained previously, the chunk-

descriptors are removed, resulting in tuples of (token, tags). This output is considered 

the baseline parse. 

3.5 Repairs on the output of ParsCit’s Baseline Parse 

A detailed analysis on the results of the baseline parsing shows that there are a 

number of ways in which they can be repaired to gain a higher accuracy of extracted 

fields. A confusion matrix M, derived from the ten-fold cross validation on C’, is one 

that shows the number of word tokens from one field (TagX) that are incorrectly 

tagged as another field (TagY). The confusion matrix M after a 10-fold cross 

validation baseline parse is as follows: 

 
    TagX 
TagY 

author title editor btitle date journal volume tech instn pages location publr note 

author 5308 138 174 8 18 20 4 4 9 1 9 3 2 
title 12 4403 16 76 2 32 1 5 16 4 10 4 26 

editor 17 0 385 36 3 6 5 0 0 0 4 3 3 
btitle 0 15 3 2083 22 73 26 13 8 4 27 15 25 
date 1 10 12 7 1493 3 4 6 3 10 14 3 9 

journal 1 26 3 46 0 671 5 22 6 2 14 3 15 
volume 0 2 1 11 11 4 608 2 3 9 8 2 1 

tech 0 4 0 8 0 2 0 289 5 0 1 0 6 
instn 1 0 0 1 3 3 1 5 350 2 27 5 1 
pages 0 4 1 4 16 3 14 8 1 1311 11 0 9 

location 0 2 0 8 7 1 1 2 7 1 446 6 12 
publr 3 0 0 11 2 8 0 6 8 1 1 319 2 
Note 0 1 1 1 2 11 0 0 0 0 0 0 80 

TOTAL 5343 4605 596 2300 1579 837 669 362 416 1345 572 363 191 
Acc 99.3% 95.6% 64.6% 90.6% 94.6% 80.2% 90.9% 79.8% 84.1% 97.5% 78.0% 87.9% 41.9%

Table 4  Confusion Matrix on output of baseline parsing 
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An examination of the output shows that errors are often due to sequences of tokens 

mistagged as another tag, i.e. all tokens in a sequence are tagged incorrectly as X 

when they should be tagged as Y. I define errors of this type as single errors. As to be 

explained in section 3.5.4, parses with one repeated field after repairs are also 

considered single errors. ParsCit attempts to isolate single errors from the baseline 

parse and perform appropriate repairs on them. 

 

Figure 9 below shows an example baseline parse of a single citation with 2 single 

errors. 

 

Correctly Annotated Citation: 

J . J Koenderink and A . J . van Doorn . Representation of local geometry in the 

visual system . Biological Cybernetics , 55 367 - 375 , 1987 . 

 

ParsCit Baseline Parse of the Same Citation: 

 

J . J Koenderink and A . J . van Doorn . Representation of local geometry in the 

visual system . Biological Cybernetics , 55 367 - 375 , 1987 . 

Single 
errors 

Figure 9  Correctly annotated citation and its ParsCit baseline parse with single errors 
 

In this section, I shall go into the details of the series of repairs done by ParsCit based 

on the output of a baseline parse: 

• Repairing of Editors  

• Repairing of Bubbles  

• Repairing of Repeated Fields (with respect to global context) 

 

3.5.1 Repairing of Editor Field 

As derived from M, the baseline parser performs poorly at tagging editor fields in 

citations. The ‘editor’ field has a token accuracy of only 64.6%, with 82.5% of its 

incorrectly tagged tokens tagged as ‘author’. This is largely due to the similar nature 

of these two fields. Also, even though the author field appears as the first field in 

citations most of the times, there are citations with the editor field (and no author field 

in the citation) appearing as the first field. 
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Editor names are almost certainly followed by certain cue words in a citation, e.g. 

 

 

In Bouma , H . , & Elsendoorn , A . G . ( Eds . ) , Working Models of Human 
Perception , pp . 391 - 410 . Academic Press , London , England . 

 

ParsCit attempts to locate these keywords in each citation and do the repairs 

according to the repairing algorithm: 

 

Define cue word-tokens set, E as {“ed”, “eds”, “editor”, “editors”} 

For each citation,  

 Get index i of any word token that belongs to E 

 For each token before i (going leftwards from i), 

  If token is tagged as author, retag as editor 

  Else break 

 End for 

End for  

 

3.5.2 Repairing of Bubbles 

Another problem of the output of a baseline parse is that a small number of tokens are 

tagged incorrectly amongst neighboring word tokens which are tagged correctly and 

are of the same tag. In this thesis, I define such bounded tokens as bubbles. Following 

the same example in Figure 9, tokens ‘in’ and ‘the’ are incorrectly tagged as 

‘booktitle’, while their immediate neighboring tokens were all correctly tagged as 

‘title’.   

 

Bubbles are errors inherent for taggers for sequence labeling tasks as tokens are 

tagged iteratively from left to right. Such bubbles are removed by retagging it with the 

same tag as its left and right neighbor tags. ParsCit determines which bubbles to 

repair by heuristics based on statistics derived from C. A table of statistics Table 5 

below shows the distribution of each field according to its length in tokens in C, and 

the proposed bubble size to be repaired.  

 21



 

 Length of Field (less then or equal to)  

Field name <=1 <=2 <=3 <=4 >4 

Proposed 
repair size 

(<=) 
author 0.00% 0.41% 2.65% 18.57% 81.43% 3 
title 0.20% 0.40% 1.41% 4.45% 95.55% 3 
editor 0.00% 0.00% 0.00% 0.00% 100.00% 3 
booktitle 0.00% 0.43% 5.21% 9.13% 90.87% 2 
date 0.00% 31.25% 55.44% 97.17% 2.83% 1 
journal 0.60% 8.43% 34.94% 48.19% 51.81% 1 
volume 10.99% 39.56% 42.31% 64.29% 35.71% - 
tech 1.64% 8.20% 36.07% 42.62% 57.38% 1 
institution 0.00% 1.72% 15.51% 31.03% 68.97% 2 
pages 1.04% 2.08% 3.46% 51.90% 48.10% 3 
location 0.73% 18.98% 29.20% 68.61% 31.39% 1 
publisher 0.00% 9.90% 53.46% 90.10% 9.90% 1 
note 0.00% 20.00% 46.67% 43.33% 46.67% 1 
Table 5  Field lengths and proposed bubble size to be repaired 
 

Using a threshold of 5%, ParsCit attempts to remove bubbles according to the 

statistics reflected above. For example, ‘volume’ appears as a single token 10.99% of 

the time, ‘volume’ bubbles are not repaired. ‘Booktitle’, on the other hand, rarely has 

a field length of less than 3, thus ‘booktitle’ bubbles of token length less than 3 are 

retagged by ParsCit. 

 

The baseline parse followed by the repairs discussed thus far makes up the output of 

ParsCit’s first iteration. 

 

3.5.3 Repairing of Repeated Fields 

It is uncommon to see field repetitions in a line of citation, i.e. a field does not 

normally appear as two or more separate chunks in the same line. In C, only 4% of 

the citations contain repeated fields. This motivates a re-tagging to remove repeated 

fields.   

 

How is this repair done? I consider a novel source of information, previous ignored by 

other citation parsers: the citation’s context within a bibliography. Citations appearing 

within a single bibliography tend to follow matching styles. As mentioned in Chapter 

1, many authors use tools for managing references. As such, citations appearing from 
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the same paper may follow a set of fixed template. I leverage this property by 

attempting to eliminate repeated fields by matching with probable templates. These 

probable templates are derived from the first iteration of parsing. A table of keys 

below is used for naming templates. 

 
Field Name Key Field Name Key 
Author A Tech K 
Title T Institution I 
Editor E Pages G 
Booktitle B Location L 
Date D Publisher P 
Journal J Note O 
Volume V   
Table 6  Table of keys of fields 
  
A template for each citation is derived from the parsed output after the various repairs 

mentioned have been done. Only templates which do not contain repeated fields are 

added to a list of “seen” templates, T. For example, if the citation below 

 

 

L . G . Valiant . A Bridging Model for Parallel Computation . Communications 

of the ACM , 33 ( 8 ) , 103 - 111 , 1990 . 

is parsed correctly by ParsCit, the template derived would be ATJVGD. With this 

template list T, citations which contain one repeated field after parsing are repaired by 

choosing a matching template (if available) from T. 

 

 

Candidate Templates 
 
 

ADEBTPL 
 

ADTBEPL 
 
 

ADTPL 
 

     Field 2 

Field 1   

 

case 1:  ADTBTPL  

       Bubble 

 

case 2:  ADTBTPL  

Figure 10  Templates with one repeated field 
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A template with one repeated field can hence be repaired in 3 ways: 

Case 1: 

• Re-tag tokens in Field 1 to tag X if candidate template exists in T 

• Re-tag tokens in Field 2 to tag X if candidate template exists in T 

Case 2: 

• Remove bubble by retagging bubble with the same tag as its neighbor tags, if 

this candidate template exists in T 

Where there are more than one candidate templates that can be applied, the template 

with highest observed frequency is used. 
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4 Overall Performance Comparison 

 
Adopting a common performance measurement, this thesis defines the following: 
 

A: number of true positive tokens (e.g. ‘author’ tokens tagged as ‘author’) 
B: number of false negative tokens (e.g. non-author tokens tagged as ‘author’) 
C: number of false positive tokens (e.g. ‘author’ tokens tagged as anything but 

‘author’) 
D: number of true negative tokens (e.g. non-author tokens tagged as anything but 

‘author’) 
 

Token Accuracy  = A D
A B C D

+
+ + +

 

 

Precision   = A
A C+

 

 

Recall  = A
A B+

 

 

F1   =  2 Precision Recall
Precision Recall
× ×

+
 

 
Overall Acc.: percentage of tokens whose predicted tag equals their  
   true field name 
 
Instance Acc.: percentage of citation lines in which all fields are extracted 

correctly 
 
Field Acc.: percentage of total fields which are identified and extracted 

successfully in all citations tested  
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4.1 Evaluation of ParsCit Features 

Morivated the success of POS tagging in (Ratnaparkhi, 1998), ParsCit started off with 

features F1, F2 and F3 similar to that was mentioned in the thesis. Finalized features 

F1 to F19 are then used for the baseline parse of the system. The results of using 

different features are shown in Table 7. 

 

Features Token Acc. Average F1 Inst Acc. Field Acc. 

Ratnaparkhi POS 
Features  

90.17% 82.07% 42.60% 
 

82.93% 

Lexical + Layout + 
Local 

92.19% 
(+2.2%) 

85.37% 
(+4.0%) 

45.60% 
(+7.0%) 

84.62% 
(+2.0%) 

Lexical + Layout + 
Local + Dictionary 
(baseline) 

92.51% 
(+2.6%) 

85.39% 
(+4.0%) 

45.60% 
(+7.0%) 

85.05% 
(+2.6%) 

Table 7  Performance of ParsCit using different sets of features 
 

In the context of citation parsing, we are concerned with the ability of the system to 

extract fields accurately; it is more useful to evaluate the performance by looking at 

the field accuracy, rather than token accuracy. As shown in Table 7, there is 

significant improvement in field accuracy with the increasing set of features used in 

ParsCit. 
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4.2 Comparison between Methods of Tagging 

   
 HMM CRF ParsCit (baseline) 
Overall acc. 73.99% 95.37% 92.51% 
Instance acc 4.40% 77.33% 45.6% 
 Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) 
author 89.9 82.8 99.9 99.4 97.8 96.2 
booktitle 92.5 71.2 97.7 93.7 97.7 90.3 
date 98.1 88.8 99.8 98.9 99.1 94.7 
editor 97.0 40.8 99.5 87.7 98.5 72.8 
institution 98.3 53.3 99.7 94.0 99.4 85.9 
journal 96.8 59.2 99.1 91.3 98.4 81.3 
location 97.8 57.1 99.3 87.2 99.1 83.8 
note 98.6 31.0 99.7 80.8 99.3 55.7 
pages 96.5 67.9 99.9 98.6 99.5 96.1 
publisher 98.7 58.3 99.3 76.1 99.6 88.1 
tech 98.6 51.4 99.4 86.7 99.5 85.4 
title 90.1 81.1 98.9 98.3 97.9 95.6 
volume 97.9 62.5 99.9 97.8 99.4 91.4 
Average  
F1-measure 

  
62.0 

  
91.5 

  
85.4 

Table 8  Extraction results (Accuracy measured in tokens) 
 

Table 8 above shows the experimental results of tagging citations using HMM and 

CRF compared to ParsCit’s baseline parse. Ten-fold cross validation to eliminate bias 

towards any training set is done on each method of tagging: 

• HMM using QTAG 

• ME model using opennlp.maxent with ParsCit features F1 to F19 

 

Accuracy values for citations tagged using CRF are taken from a very recent paper 

(McCallum and Peng, 2004) also based on the same training set C. However, it can 

only be used as a rough comparison as the test was done on 150 randomly chosen 

citations, with the remaining 350 used for training. 

 

Out of the 500 citation lines tagged under cross validation, only 22 lines have had all 

their fields correctly extracted for a HMM-based citation parser (4.4% instance 

accuracy). ParsCit’s baseline parser achieves overwhelming increase in performance 

as compared to this method, with an instance accuracy of 45.6%, and has comparable 

performance with the CRF method in terms of overall token accuracy. 
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4.3 Evaluation of ParsCit Repairs 

 
 ParsCit (baseline) ParsCit (repair) 
Overall acc. 92.51% 94.20% 
Instance acc 45.6% 60.8% (+33.3%) 
 Acc (%) F1 (%) Acc (%) F1 (%) 
author 97.8 96.2 99.3 98.7 
booktitle 97.7 90.3 97.8 90.9 
date 99.1 94.7 99.4 96.2 
editor 98.5 72.8 98.4 90.9 
institution 99.4 85.9 99.5 87.1 
journal 98.4 81.3 98.5 82.0 
location 99.1 83.8 99.1 83.4 
note 99.3 55.7 99.4 59.0 
pages 99.5 96.1 99.4 95.9 
publisher 99.6 88.1 99.6 89.0 
tech 99.5 85.4 99.4 84.5 
title 97.9 95.6 98.4 96.7 
volume 99.4 91.4 99.5 92.1 
Average  
F1-measure 

 85.4  88.2 

Table 9  Performance comparison between baseline parse and repairs 
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Figure 11  F1 comparison between baseline parse and repairs  
 

Table 9 above shows a performance comparison of ParsCit System before and after 

repair. There is an increase in per-field F1-measure for almost all fields as depicted in 
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the graphical representation Figure 11. Repairs on the baseline parse gives a 

significant improvement of 33.3% in instance accuracy.  

 

58.9% of the citations parsed incorrectly from a ParsCit baseline parse contain only 

single errors, which ParsCit is capable of correcting. 449 tokens categorized as single 

errors out of 801 (56.1%) were successfully corrected using repairs mentioned in the 

previous chapter.  

 

The same set of repairs is done on the baseline parse of the HMM-tagged output on C 

to prove its effectiveness. By defining good parses as citations from which at most 

one complete field is not extracted correctly, we have the following comparison in 

Table 10. 

 
 Field Acc. Instance Acc. Good Parse 

HMM 

(baseline) 

53.7% 4.4% 24.0% 

HMM 

(repairs) 

57.8% 

(+7.6%) 

6.6%  

(+50.0%) 

31.0%  

(+29.2%) 

ParsCit 

(baseline) 

85.1% 45.6% 78.6% 

ParsCit 

(repairs) 

90.0% 

(+5.86%) 

60.8%  

(+33.3%) 

88.0%  

(+12.0%) 
Table 10  Evaluation of repairs done on HMM and ParsCit baseline 
 

Given the effectiveness of repairs done by the system, it is believed that these repairs 

will also improve the performance of a CRF-based citation parser, to gain an 

estimated instance accuracy of 85%, when used together with features developed in 

this thesis, i.e. out of 20 citations parsed, 17 will have all their fields extracted 

successfully. 
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5 Conclusion and Future Work 

ParsCit is an citation parser which eliminates manual effort to hand-annotate citations 

of a literature work by using a statistical machine learning technique, maximum 

entropy. ParsCit is different from previous citation parsers in that the parsing process 

does not require citations to fit into any of a database of fixed templates. To my 

knowledge, it is the first citation parser that repairs single errors and leverages of 

contextual template information when parsing citations from the same bibliography.  

This information is utilized in repairing citations parsed with one repeated field.  

 

I have shown in this thesis the success in the features and repairs incorporated into the 

parser, achieving a field accuracy of 89.95%. Due to the nature of the ME model, 

ParsCit is also expected to perform with considerable accuracy for citations of various 

templates and disciplines, even though the training set is small. 

 

With each citation a bibliography parsed successfully, fields such as ‘authors’, ‘title’ , 

etc. extracted can be used to build a citation database. This process is critical for 

citation analysis like citation indexing. A citation index (Garfield, 1979) indexes the 

link between the articles published and the cited material. As summarized in 

(Lawrence et al, 1998), citation indexing can  

“improve scientific communication by revealing relationships between articles, 
drawing attention to important corrections or retractions of published work, 
identifying significant improvements or criticisms of earlier work, and helping 
limit the wasteful duplication of prior research.”   

 
Research paper search engines such as CiteSeer (Lawrence et al, 1998) Cora 

(McCallum et al, 2000) provide various detailed analyses based on citation indices, 

providing great convenience to researchers. ParsCit, with its flexibility and portability, 

allows a database to be built and makes it possible for citation indexing even for a 

researcher’s personal use.  

 

Repairs mentioned in this thesis can be employed on similar natural language 

processing tasks which demands structures or metadata to be extracted from a 

sequence of text. Such tasks include the extraction of various common fields from 

headers of research papers, classified ads, etc.  
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Inherent of all supervised machine learning techniques, a large, labeled training set 

helps to improve the performance of ParsCit. A web-based annotation system has 

been set up to allow volunteers to hand-annotate a random set of citations to further 

expand the existing labeled training dataset. Web spidering techniques may also be 

applied to automatically search for literature works from which ParsCit will attempt to 

parse. Parses which are deemed to be good will then be appended to its existing 

training set.  

 

Additional supporting databases (such as a journal name database, publisher database, 

country name database, etc.) can also be collected to help the system identify and 

extract fields. 
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Appendix A 

A1 – Sample from Training dataset C’ 

<start>_<start> A_author%HEAD ._author%BODY Cau_author%BODY ,_author%BODY 
R_author%BODY ._author%BODY Kuiper_author%BODY ,_author%BODY 
and_author%BODY W_author%BODY ._author%BODY -_author%BODY 
P_author%BODY ._author%BODY de_author%BODY 
Roever_author%BODY ._author%TAIL Formalising_title%HEAD Dijkstra_title%BODY 
'_title%BODY s_title%BODY development_title%BODY strategy_title%BODY 
within_title%BODY Stark_title%BODY '_title%BODY s_title%BODY 
formalism_title%BODY ._title%TAIL In_editor%HEAD C_editor%BODY ._editor%BODY 
B_editor%BODY ._editor%BODY Jones_editor%BODY ,_editor%BODY 
R_editor%BODY ._editor%BODY C_editor%BODY ._editor%BODY 
Shaw_editor%BODY ,_editor%BODY and_editor%BODY 
T_editor%BODY ._editor%BODY Denvir_editor%BODY ,_editor%BODY 
editors_editor%BODY ,_editor%TAIL Proc_booktitle%HEAD ._booktitle%BODY 
5th_booktitle%BODY ._booktitle%BODY BCS_booktitle%BODY -_booktitle%BODY 
FACS_booktitle%BODY Refinement_booktitle%BODY 
Workshop_booktitle%BODY ,_booktitle%TAIL 1992_date%HEAD ._date%TAIL 
<end>_<end> 
 
<start>_<start> M_author%HEAD ._author%BODY 
Kitsuregawa_author%BODY ,_author%BODY H_author%BODY ._author%BODY 
Tanaka_author%BODY ,_author%BODY and_author%BODY 
T_author%BODY ._author%BODY Moto_author%BODY -_author%BODY 
oka_author%BODY ._author%TAIL Application_title%HEAD of_title%BODY 
hash_title%BODY to_title%BODY data_title%BODY base_title%BODY 
machine_title%BODY and_title%BODY its_title%BODY 
architecture_title%BODY ._title%TAIL New_journal%HEAD Generation_journal%BODY 
Computing_journal%BODY ,_journal%TAIL 1_volume%HEAD (_volume%BODY 
1_volume%BODY )_volume%BODY ,_volume%TAIL 1983_date%HEAD ._date%TAIL 
<end>_<end> 
 
<start>_<start> Alexander_author%HEAD Vrchoticky_author%BODY ._author%TAIL 
Modula_title%HEAD /_title%BODY R_title%BODY language_title%BODY 
definition_title%BODY ._title%TAIL Technical_tech%HEAD Report_tech%BODY 
TU_tech%BODY Wien_tech%BODY rr_tech%BODY -_tech%BODY 02_tech%BODY -
_tech%BODY 92_tech%BODY ,_tech%BODY version_tech%BODY 
2_tech%BODY ._tech%BODY 0_tech%BODY ,_tech%TAIL 
Dept_institution%HEAD ._institution%BODY for_institution%BODY 
Real_institution%BODY -_institution%BODY Time_institution%BODY 
Systems_institution%BODY ,_institution%BODY Technical_institution%BODY 
University_institution%BODY of_institution%BODY 
Vienna_institution%BODY ,_institution%TAIL May_date%HEAD 
1993_date%BODY ._date%TAIL <end>_<end> 

 A-1 



 

A2 – Legend for Fields 

author  title editor booktitle date 
journal volume tech institution pages 
location publisher note   
 
Field Color/Font 
author red 
title bold 
editor yellow 
booktitle black italics 
date gray 
journal silver 
volume blue 
tech olive 
institution maroon 
pages black 
location green 
publisher brown 
note orange 
 

  



 

Project Information 
 
Project Type  : Honours Year Project 

Project Area : Software Systems 

Project Title           : Citation Parsing Using Maximum Entropy and Repairs 

Project No : H79040 

Student’s Name : Ng Yong Kiat  

Project Advisor : Assistant Professor Kan Min-Yen 

Date of Completion : November 2004  

Deliverables  : Report 1 Volume 

Implementation 
Software and 
Hardware 

: DELL PC Intel Pentium 4 CPU 1.60GHz with 256 MB RAM, 
Windows XP, Perl, HTML, Java, MAXENT Package, pdftotext 
from Xpdf 

 
Abstract 
This thesis presents ParsCit, a system which parses citations from a publication or article, 

and label parts of citations with their corresponding field names. As citation styles differ 

between disciplines, publishers and authors, the task of citation parsing is difficult and 

inherently ambiguous.  Whereas traditional citation parsers use a manually compiled set 

of rules to perform parsing, ParsCit adopts the framework of machine learning, learning 

rules for parsing from annotated data.  A maximum entropy framework is employed to 

create a basic citation parse, and a series of repairs is performed to improve system 

accuracy. Given as few as 500 training examples, ParsCit is able to achieve a token 

accuracy of 94.20%, comparable to related machine learning approaches which lack the 

use of features applicable to the context of citation parsing. In this paper, I shall also 

emphasize the efficiency of the system’s set of repairs, which is absent in citation parsers 

seen to date. 
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I.2.6 Learning  
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