

Citation Senser

CS6604: Digital Libraries Course Project

PROJECT CLIENT: Dr. Godmar Back

Submitted by:
Prasad Gopal, Suraj Menon, Veena Basavaraj

Date: 12/5/2005

 2

TABLE OF CONTENTS

TABLE OF CONTENTS ... 2

LIST OF FIGURES.. 2

ABSTRACT .. 3

1. INTRODUCTION .. 4

2. PROBLEM STATEMENT.. 4

3. SOLUTION APPROACH ... 5

4. BACKGROUND... 5

5. COMPARISON OF DIFFERENT DESIGN APPROACHES ... 10

6. CITATION-SENSER DESIGN... 11

DESIGN OVERVIEW: ... 11
DESIGN GOALS: .. 12
DESIGN DETAILS: ... 12

7. PROBLEMS AND TRADEOFFS IN IMPLEMENTATION... 17

8. USER MANUAL ... 19

9. DEVELOPER MANUAL .. 20

10. EVALUATION... 25

11. EVALUATION RESULTS.. 27

12. FUTURE WORK.. 27

REFERENCES ... 28

FURL ENTRIES... 30

ACKNOWLEDGEMENTS ... 31

LIST OF FIGURES

Figure 1: Concept map describing the Citation Senser__ 5
Figure 2: Citation Senser Design Overview __ 12
Figure 3: A Repeated tag pattern DOM Tree ___ 12
Figure 4: Record Boundary Detection __ 14
Figure 5: Concept Map for Citation Parser - Approach 1 _____________________________________ 15
Figure 6: Concept Map for Citation Parser - Approach 2 _____________________________________ 17
Figure 7: Snapshot of false positives__ 18
Figure 8 : Snapshot of false negatives___ 19

 3

ABSTRACT

This project aims at developing an add-on feature to LibX-A Firefox extension for

libraries, developed by our client Dr. Godmar Back and Annette Bailey. This feature will

sense citations in any ad hoc web page and parse it to construct an OpenURL link for the

citation entry. This project also aims at evaluating a few of the other OpenURL resolvers

for the VT Library.

The major tasks of this project are:

• To sense citations in web pages that follows certain standard styles.

• To parse the citations for key fields (metadata) like the author(s), title,

publication, and year.

• To generate OpenURL links for the parsed metadata according to the OpenURL

standards.

The design goals of this project are summarized in order of their priority.

• A browser solution that does not hinder the performance or user experience on

the web while sensing and parsing the page contents.

• A solution that will avoid false positives and does not detect non-citation entries.

• A solution that will try to minimize the false negatives. The solution should parse

atleast the standard citation styles and formats.

This report provides a background on the existing literature and implemented solutions

for sensing citation information on the web and also parsing the citation entries for

metadata. The remaining sections of the report discuss the design, implementation,

problems and tradeoffs we encountered in developing this solution in a browser

environment and finally the evaluation results for the current implementation.

 4

1. INTRODUCTION

This project aims at developing an add-on feature to LibX-A Firefox extension for

libraries [23], developed by our client Dr. Godmar Back and Annette Bailey. LibX

provides direct access to an institutions library resources via a firefox browser extension.

The add-on feature will sense citations in any ad hoc web page and parse it to construct

an OpenURL link for the citation entry. This project also aims at evaluating a few of the

other OpenURL resolvers for the VT Library.

Citations can have one or more of the following parts. Comma, space or period separator

is used between the parts

.

• [Serial Number]

 e.g. [1], [CLR90a], [Shaf98a]

• [Author(s) Name]

• [Title of Periodical or Book]

• [Publication]

• [Volume Number]

• [Number of Pages]

• [Date]

Certain standard citation style guidelines are available for various disciplines and are

followed by users in those disciplines. Each style format includes the same basic parts of

the citation listed above but are organized differently. Each specific style also has

variations for different types of articles. Here is the list of different types of articles

supported. They are:

• journal or magazine article

• newspaper article

• article from an Internet database

• book

• book article or chapter

• encyclopedia article

• web articles.

2. PROBLEM STATEMENT

Most often web articles or user’s personal web pages that refer to (or cite) various

literature and scholarly information do not have access to the actual cited documents and

there are no hyperlinks to them. In some instances, even though a link to the cited

resource is provided, all users may not have direct access to it. OpenURL standards are a

solution to such a problem. OpenURL links contain the access information along with the

citation metadata. They are directed to the OpenURL resolvers who take into account the

identity of the user and provide access to the resources specified in the metadata.

 5

3. SOLUTION APPROACH

The approach taken to solve the problem of providing access to cited documents based on

users’ access rights can be divided into three parts namely:

• To sense citations in ad hoc web pages that follows certain standard styles.

• To parse the citations for key fields (metadata) like the author(s), title,

publication, and year.

• To generate OpenURL links for the parsed metadata according to the OpenURL

standards.

Figure 1 is a concept map that describes the overall problem solution of this project.

Figure 1: Concept map describing the Citation Senser

4. BACKGROUND

The section provides a review and brief explanation of the techniques and solutions that

exist currently for citation sensing and parsing.

CITATION SENSING:

RECORD BOUNDARY EXTRACTION:

 In order to parse the citations, we have to extract the records of interest from a

web page. Once we narrow down to the correct sections of the web pages, we can apply

 6

parsing to obtain metadata from them. We investigated certain existing record boundary

extraction techniques to sense the citations in web pages.

 [19] explains how we could get sections of interest from a web document. It does

so by finding the section that could potentially contain what we are looking for and then

applying few heuristic tests on those to extract the desired part. It applies this technique

to find car advertisements and obituaries from newspaper websites. In this record

boundary extraction technique we first find the node with the maximum fan out and

assume that the maximum fan out node should have the records of interest. Then we

apply heuristics to score the potential sections and infer whether each of these sections is

of interest or not. This technique employs heuristic tests like ontological matching,

repeating tag pattern test, standard deviation heuristic, identifiable separator tags and

highest count tags and then applies combined heuristics to integrate the results from the

above heuristic tests. The final scoring results indicate whether the records under

consideration are the valid ones or not. In ontological matching the candidate sections are

searched for related keywords and constants. The repeating-tag pattern heuristics test

checks for patterns of tags that are repeated. The standard deviation heuristics test

measures the length of text between two tags of the same name and then measures the

standard deviations in these lengths for all types of tags present in the web document. The

lower the deviations found for a type of tag, the better are the chances that the records are

bounded by that tag. In the “identifiable separator tags” test we look for tags that are

commonly used for separating records from each other. In the “highest count tags” test

the tags are ranked based on the number of times they are present. The results of these

tests are tested for various types of data and then a certainty factor is computed for each

heuristics test. This certainty factor is used to integrate the results of individual tests. The

final score decides whether the node defines the boundary for the records of interest.

 However, [19] completely rules out cases where records are contained in repeated

tree patterns. [20], [21] and [22], of Bing Liu, emphasizes on having a generalized idea

on extracting records from a web page. They create a tree out of the html tags and then

find patterns in trees and extract records at their correct boundaries. [20] extracts records

present in the form of simple patterns. [21] uses a enhanced technique. It does a “simple

tree matching” and defines the concept of “seed tree”. Seed tree keeps track of all the tree

patterns that occur in a tree. It is used as a reference tree for matching with the tree

structures that are found while scanning the web page tree. [22] also handles cases where

records have interleaving occurrence in the tree.

CITATION PARSING:

CORNELL DIGITAL LIBRARY research work:

 In [1], reference linking is the term given to the process of dynamically linking to

the cited documents from the citing paper. In the past, similar efforts have been taken up

as part of the CrossRef [7] project which involved the IEEE, ACM and many others. The

references to archival journals and proceedings in their digital libraries were cross-linked

to aid researchers. Automatic reference linking lies between the Citation Index’s static

link discovery and the web author’s manually inserted links. The work at Cornell is more

generic and looks into irregularly formatted online documents (web pages) with a variety

of reference styles and uses heuristics to extract the metadata.

 7

The primary task is to analyze the entire document and find reference strings. This

work not only analyses the reference strings but also matches the reference anchors in the

body of the document to the tags in the reference strings (found in the references section).

The online HTML documents are normally preprocessed to convert them into XHTML or

ASCII so that parsing is easier. ResearchIndex [5] also known as the CiteSeer converts

PDF/PS to ACSII using the PStotext utility. The Opcit project at Southampton [6]

converts archived PDF to ASCII format before parsing using another utility. At Cornell,

the Jtidy package is used to convert the HTML to XHTML. Once the XHTML is

obtained, readily available XML parsers are used to analyze the text. In order to locate

the list of references and extract metadata for each of the reference strings, the deciter

package from Southampton [6] is used. The document is scanned for section headings

like references, bibliography. The Southampton deciter routine outputs the metadata

obtained from the reference string in the form of an XML. Then a DOM parse of XML is

done to extract the information of interest and an URN (Uniform Resource Name) is

synthesized.

The Deciter routine is similar to adddoc Perl module of Research Index [5] and

uses clever heuristics. The details of how an author’s name is parsed using deciter can be

obtained from the Text::BibTex::Name Perl module. Existing tools find it best not to

parse the reference string from left to right, but to first isolate date and page range if

present from the reference string. Then parse the string for author names until the (“) or

(‘) character is encountered. This is considered as the starting point for title. The text

obtained from this point till the publication date is parsed as the title.

 The secondary task is to link reference strings to full-text documents using

OpenURL resolvers like SFX. This is dynamic and is done at presentation time rather

than analysis time like in [5]. It treats reference link resolution as a separate task from

reference link analysis. Both static and dynamic linking is supported. Static linking is

done by collecting information from each of the analyzed documents and is stored in the

database for later use. An object oriented (java) API has been built at Cornell [2, 3] that

creates a surrogate object for each document. The first time a surrogate object is

instantiated for a document, the surrogate parses it and collects reference linking

information. This information becomes part of the data encapsulated in the surrogate.

This data is distributed through the API for other client programs to perform static link

resolution.

PARATOOLS:

 Paratools is a set of Perl modules for handling citations. It includes:

• Reference parsing modules and templates

• Document parsing modules

• OpenURL creation and processing routines

 The main modules developed as part of [6] are the reference parser, reference

resolver, web query and web service interface and the OpenURL query interface. The

reference parser is also called the ParaCite parser or Paratools [6]. This is written entirely

in Perl, with its regular expression support making up the core of the parsing

functionality. This tool uses a high-level template matching scheme. Here template

means a reference or citation style. A collection of reference templates exist and these are

being compared against the reference strings and the best fitting template is used to split

the reference string information into metadata. Each field in the reference information,

 8

i.e., the author, publisher, and title, are weighted for each of the template using matches

with its corresponding regular expressions. The template with the highest overall score is

chosen and metadata is constructed as per the template.

 ParaCite has been integrated with the EPrints.org software. It is used to find free

online versions of existing journals. The authors of [6] also claim that the web service

interface can be used to create plug-ins for existing software, such as web browsers and

document editors and this would automatically create OpenURLs for references.

AUTOBIB:

 AutoBib [8] is another system that caters to extracting bibliographic information

on the WWW. Rather than relying on pattern matching heuristics alone, statistical

techniques are also used. The AutoBib mainly has 3 steps to resolving the citations. A

one time first step is to create a seed database from an existing bibliographic source. This

seed database will contain structured records. Structured records are created from sample

reference strings after resolving each field of the citation data and identifying its type. For

instance, consider the following citation. “Pankaj K. Agarwal and Pavan K. Desikan. An

efficient algorithm for terrain simplification. In Proceedings of the 8th Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 139-147, New York / Philadelphia,

January 5-7 1997. ACM / SIAM”.

 They do a space-delimited tokenization of the reference text. The tokens obtained

from this process are annotated with keywords like author, title, date, etc. (“Pankaj”),

(“K”), (“Agarwal”) are identified as author, (“An”), (“efficient”), (“algorithm”) are

identified as words in the title and so and so forth. These are stored in the seed database.

This is just a one time process.

 The second step is to extract raw webpage’s from similar bibliographic sources

(DBLP, CCSB). The contents of the web pages are analyzed using record-boundary

techniques and the output of this process are tokenized strings. The tokens contain

numbers, delimiters, tags and words. Once the tokens are created, matching is done with

the structured records in the database using direct string matching and a set of three

heuristics. They are the contains-in heuristic, grouping heuristic and acronym heuristic.

At the end of this there are references that have tokens that are annotated as author, title,

date, etc. This annotated data is used as training data for the HMM parser. The references

that did not match the structured records are fed into the HMM parser.

 The last step is to parse the unknown fields into known fields. For this a HMM is

created. A HMM is defined by five things, which are as follows:

• set of known states

• set of observed symbols

• transition probability matrix from state i to state j

• emission probability matrix of emitting a symbol j when in state q and initial

probabilities of each state.

The next job is find out the optimal sequence of states that led to the current

sequence of observed symbols (in this context, the sequence of observed symbols refers

to the sequence of raw tokens). The optimal solution is obtained using the dynamic

programming method called the viterbi algorithm. This algorithm selects one optimal

sequence of states that has highest probability value. Once the sequence of states is

 9

determined; it is easy to identify the type of the unknown token. For instance if the 5
th

token is unknown, the 5
th

 state in the optimal sequence would identify the type of the

unknown field.
TEMPLATE MINING:

 One other system [10] uses template mining for extracting citation information.

Four templates have been created using template mining, one for extracting information

from the citing articles, and the other three for extracting information from the cited

articles (which is the citation list). The details of the template are available in [10].

Template mining is used to extract data from the text based on observed patterns. When

the text matches a template the corresponding data is extracted according to the

instructions associated with that template. The templates were created using an iterative

process of template specification, evaluation and modification. Many journal articles

which strictly follow the citation style guidelines were analyzed and patterns were

identified. The citing article template was derived by analyzing 43 articles with 1067

citations. The cited article template was derived by analyzing 34 articles with 1112

citations. There is no concrete information on the citation styles of these entries though

the names of the 12 journals from which these samples were taken are given. The paper

concludes that the proposed templates are just initial prototypes and require further work.

Also the template’s ability to recognize the citation components will be determined by

the sequence and matching process that will be used.

GLR PARSER:

 LR parsers are not effective in handling ambiguous situations [11]. Masaru

Tomita brought up the concept of Generalized LR parser which could be used for

ambiguous grammars especially in case of natural language processing. The parser used a

GLR stack (variation of LR stack) which necessitated operations very complex in nature.

[12, 13, 14] describe the efforts made to reduce this complexity by using a probabilistic

model to parse string data. These methods use probabilities that are known for each

action of LR tables in order to determine the shift or reduce actions based on the LR state.

The work in [15] also describes a probabilistic model, but it uses information from the

LR stack of the partially parsed tree for the contextual information. This idea is called

“Condition Access Model”. The work in another paper [16] claims to make this better by

using the structural characteristics of the parsed tree. This is represented by “Surface

Phrasal Types”. The authors of [17] explain an application of the GLR parser in natural

language processing. It uses “grammar partition” and “parser composition” approaches to

improve the efficiency of GLR parsing.

 Grammar Partitioning is done by dividing the main grammar into sub grammars.

Each of the sub grammars is divided into sub grammars and is assigned level numbers.

Sub grammars that need to interact with each other have the same level. Thus a hierarchy

of sub grammars is formed under the main grammar. This is possible by introducing the

concept of virtual terminals. Virtual terminals act as terminals for a sub grammar, even

though they are non-terminals. Cascaded parsing and predictive pruning are the two main

techniques of Parser Composition.

 The GLR parser introduced in [18] has the capability to skip unrecognizable parts

in a sentence and parse any text. It is used in parsing spontaneous speech. However this

idea could be used in cases where we would need to skip unwanted parts found on

citations on web pages such as unwanted HTML tags of tables or hyperlinks in between

 10

them. The authors of [18] explain few heuristics that could be used to evaluate partial

parse trees generated by the GLR parser.

CiteUlike:

 CiteUlike is a free service to help academics to share, store, and organize the

academic papers they are reading. CiteUlike automatically extracts the citation details

from specific sites and a personal online library of reference information can be created.

The system is not open source, but there is a possibility of using such online citation

reserves to implement a server support based Citation Senser. One main issue with such

an implementation would be performance.

5. COMPARISON OF DIFFERENT DESIGN APPROACHES

We can broadly classify the different systems studied under the following categories.The

different approaches are compared using few variables. A brief explantion of each of the

following is as follows.

 The rule or heuristic based approach uses regular expression matching and

heuristics to identify parts of the citation.The GLR parser based approach is based on

grammar definition and is efficient.The statistical approach uses the probability based

HMM model.The server support based solution relies on external servers which maintain

citation data for resolving parts of the citation.

Parameters

Rule or
Heuristic
Based
Solution

Parser
Based
Solution

Statistical
Based Solution

Server
Support
Based
Solution

Example System(s)

Paratools,
Cornell’s work,
Template
mining

GLR parser
used in NLP

AutoBib using the
Hidden Markov
model

Using external
system like
CiteUlike

Citation Styles supported

Around 400
(limited)

Depends on
the grammar
constructed

Depends on the
training data

Depends on
the results
from the
external server

System trainable

No

No

Yes

No

Efficiency/Complexity
of parsing

Sequential and
not efficient

Efficient
parsing

Efficient

Efficient

Performance/Scalability

Slow, not
scalable for
large datasets

Scalable

Scalable but not
for browser
based
implementations

Scalable
 (The request
/response time
might
increase.)

Can it be implemented

Yes

Yes

Yes, Limited by

Yes

 11

on the browser the size of
training data set

Complexity of
Implementation w.r.t to
team skills

Low

High

Medium

Low

Track record of tool used

Citebase
citation
analysis of
arXiv physics
papers

Normally
used for
parsing
spontaneous
speech

AutoBib an
academic
research work
only for CS
related citation
data

CiteUlike has
an online
repository of
citation data,
but there is no
facility to
access this
data

6. CITATION-SENSER DESIGN

DESIGN OVERVIEW:

The Citation Senser has the following parts.

• Citation Record Boundary Detection - find the sections of the web pages that

contain the citations.

• Citation Record Paring – The raw citation data is parsed to identify its different

parts in order to construct the metadata for the OpenURL.

Figure 2 provides a high level overview of the Citation Senser design using concept

maps.

 12

Figure 2: Citation Senser Design Overview

DESIGN GOALS:

The design goals of this project are summarized in order of their priority.

• A browser solution that does not hinder the performance or user experience on the

web while sensing and parsing the page contents.

• A solution that will avoid false positives and does not detect non-citation entries.

• A solution that will try to minimize the false negatives. The solution should parse

atleast the standard citation styles and formats.

DESIGN DETAILS:

Record Boundary Detection:

A DOM (Document Object Model) tree of the web page is available. It is a tree

representation of the html tags (called nodes) and the text within them. There are

numerous patterns in which the citation data exists in web pages. Moreover it could be

embedded at any hierarchy of the DOM tree. Records are normally found in the

following ways: Figure 3 shows the repeated patterns of tags in web pages.

Figure 3: A Repeated tag pattern DOM Tree

 Repeated Pattern tag

 13

From these extracted patterns, we have to make sure that we extract the correct records

from their exact boundaries. Our work is very much based on the efforts of [20] & [21].

The steps involved in this process are given. The details of the design are also depicted in

the concept map Figure 5.

• First we find all the heading tags in a DOM tree in their order of occurrence. We

did this by using XPath expressions.

• Ontological matching for keywords such as Publication, Journal, Report,

Conferences, and References is performed on the text content of these heading

tags. If matched we boost the score of the records found in subsequent operations.

• For each heading tag we do a post order traversal of the part of the DOM tree that

contains text which is usually below the heading nodes.

• As we do this post order traversal, we create a “universal pattern tree” (on similar

lines of “seed tree” in [21]) that keeps track of the patterns that are occurring

within that section of the DOM tree till the point we have completed our post

order traversal of the DOM tree.

• As shown in the above figure, the uncolored part of the tree is the seed tree that

we obtained till the point of addition of new node “L”. The pattern root>A>L was

not encountered by the seed tree till then. Hence it gets added to the tree. From

this point, any more occurrence of pattern root>A>L would contribute to the tree-

 14

match score of node A at level 1. Now at every level we also do an ontological

test, where we look for certain keywords and score every node for that.

• The node-level tracker keeps track of all these scores and the records that are

found at each level. After saving all possible records at a particular level we move

back to the upper level to do the same.

• Text length<50 are not considered as citation records. This eliminates the false

positives that even pass the ontological matching.

• Finally we scan from the top, for records that has a cumulative score greater than

a predefined threshold value.

• For all such records extracted, we discard the records that are saved at lower

levels of node-level tracker for the current record.

• We record each and every node that has already been scanned to avoid repeated

traversing.

Figure 4: Record Boundary Detection

Citation Record Parsing:

Approach 1: This uses ontological matching and heuristics to extract the metadata. The

boundaries that divide the key fields are determined using heuristics. The details of the

design are depicted in the concept map (Figure 5). Few of the heuristics used are:

• The title occurs between decimeters such as “ ” ,’ ’ and within ,<i>html tags.

• The authors usually occur in the beginning or in the initial two-thirds of the

citation string.

Ontological matching for keywords such as “publication” ,”journal” ,”proceedings”

,”volume” ,”pages” provide information on the boundary for the occurrence of the

 15

publication field in the citation string. Regular expression is used to determine the

author(s).

• In cases where we don’t get any metadata from the citation record that could be

given to the VT Article Linker Open URL resolver, we create a Google Scholar

link out of a part of the citation record. We expect that the Google Scholar results

from this link should give an Open URL that is already been provided by the

LibX extension.

Merits and Demerits of Approach 1:

• Faster and more suitable for a browser implementation

• False negatives are likely due to use of heuristics

• Ontological matching can trigger false positives

Figure 5: Concept Map for Citation Parser - Approach 1

Approach 2: This uses the regular expression based template matching and scoring. The

details of the design are depicted in the concept map (Figure 6). The salient features of

this approach are:

• Templates represent citation styles for journal articles, books e.t.c. An example of

a template is 'AUTHORS_ (_YEAR_) Precis of "_TITLE_". _PUBLICATION_

VOLUME(_ISSUE_)',

• These templates contain tokens (for instance ,YEAR, TITLE, ISSUE) which map

to the key fields of the citation such as author , title , publication , volume , pages

e.t.c

 16

• The tokens in the template are represented by regular expressions. Each token has

a reliability score.

• The Reliability scores associated with a few tokens are shown below.:
 "_ISSN_"=> 0.95,"_AUTHORS_"=> 0.65,"_EDITOR_"=> 0.6,"_DATE_"=> 0.95,

• The citation string in sequentially matched with each of the available templates

represented by regular expressions to determine the format of the citation. Since

this can result in more than one match, reliability and concreteness scoring is

done.

• Reliability scoring: This returns a value that is an indicator of the likelihood of a

template matching correctly. Fields such as page ranges, URLs, etc., have high

likelihoods (as they follow rigorous patterns), whereas titles, publications, etc. have lower

likelihoods.

• Concreteness scoring: This return a value that indicates the number of non-field

characters in the template. The more 'concrete' a template, the higher the probability that

it will match best. For example, '_PUBLICATION_ Vol. _VOLUME_' is a better match

than '_PUBLICATION_ _VOLUME_', since _PUBLICATION_ is likely to subsume

'Vol.' in the second case.

 Merits and Demerits of Approach 2:

• Sequential matching, slower , less suitable for a browser implementation

• Accuracy is low for multiple author citation strings

• Generic templates like _TITLE_, YEAR trigger false positives. Examples of

such problems are discussed in the following section.

 17

Figure 6: Concept Map for Citation Parser - Approach 2

7. PROBLEMS AND TRADEOFFS IN IMPLEMENTATION

This section outlines the problems encountered during the implementation. It also

discusses the tradeoffs used to meet the design goals.

Problem 1: There are no standards to creating web page content. The citation text can be

embedded in any tag and at any hierarchy. Users have their own styles of writing html

content using different tools to create them. False positives were generated in many web

pages. Record Boundary technique was the bottleneck.

Figure 7 is a snapshot of the false positives from the naïve Record Boundary. The

keyword “Conferences” in the heading tag is picked up as a section heading that contains

citation records.

 18

Figure 7: Snapshot of false positives

Solution:

• Enhanced Record boundary as described in Figure 4.The Record Boundary

recursively searches through all levels to avoid false positives and also minimize

false negatives.

Consequence: Performance is affected for longer web pages with large text content.

Problem 2: Performance is a major concern in the browser extension. Both space and

time optimal solution is the prime requirement. The user experience on the web should

not be throttled due to the extension.

Solution:

• The approach-2 parser implementation described in Section 6 caters to many

citation styles, but the sequential regular expression matching slows down the

parsing process. In order to eliminate this, approach -1 was implemented which is

based on heuristic and ontological matching.

Consequence:

• False negatives. Figure 9 is a snapshot of the parsing extension results on a

faculty page. The existing heuristics fail to sense most of the citation entries that

do not have the ontological entries we are maintaining.

 19

Figure 8 : Snapshot of false negatives

8. USER MANUAL

Firefox extensions are enhancements to the existing browser features. Our

implementation has been tested on the Firefox 1.0.x. it has not been tested on the latest

Firefox 1.5 version.

Installing the Extension: One way to install the extension is:

• Go to the Firefox browser File menu -> open File -> LibX_cs.xpi. The following

screen is displayed.

• Press on Install Now. The following screen is displayed

 20

• Close and Restart Firefox for the extension to be activated.

Uninstall the Extension: Go to the menu Tools -> Extensions. Select the entry in the list.

Click "Uninstall" at the bottom left (it looks like an X). Restart firefox.

9. DEVELOPER MANUAL
The following is a brief description of few of the important JavaScript classes developed

for the firefox extension.

Class: ontoLogicalTest

ontologicalTest class is responsible for ontological matching of any piece of text with

certain keywords that are related to citation records. An instance of this class could score

text based on presence of keywords related to citation records. It can also parse the text of

citation records for extracting metadata out of it.

Constructor:

ontoLogicalTest()

Creates an instance of the class

Attributes:

keywords Contains array of regular expression for matching

keywords

treg Regular expression that looks for title in double

quotes

Authors Regular expression that matches most of the styles

of occurrence of author in a citation record

Methods

 21

doMatch(text) matches the input text for keywords and score the

piece of text accordingly

parameter: String text

doAdvancedMatch(text) parses the text with certain heuristics and extracts

metadata out of the text

parameter: String text

getScore() returns the average score

getMaxScore() returns the maximum score

getComprehensiveScore() returns the score from advanced scoring mechanism

getMatchedComponents() returns array of with indexes that are types of parts

of the citations

getMatchedComponentString() returns string equivalent of types of the parts of the

citations

Class: record

Represents a record.

Constructor: record(nodes, score):

Parameter: nodes - array of HTMLElement

 text - String containing the citation record.

creates an instance of records with nodes and the text in those nodes.

Attributes:

cumulativeScore Total score after ontological match and tree match

nodeArray Array of nodes that make the record

textContent Total text contained in the record

title Title extracted from the text in record

journal Journal name extracted from the text in record

author Author name extracted from the text in record

Methods:

isAlreadyIncluded() Returns true if this is already included in a record at

higher level.

 22

accepted() Signals that the current record is accepted. It

updates the attributes title, author and journal by

parsing the text.

Class : levelTracker

An instance of this class keeps track of the treematch score and records formed at each

level of the seed tree.

Constructor: levelTracker(l)

Parameter: l – level number

Attributes:

level Level that is getting monitored

records Array of record

nodes Array of HTMLElement that are been added before

creating a records out of them

nodeTracker Array that uses its index to log tree matching.

THRESHOLD The minimum value that a record must have to qualify

as a valid record

recordExtractedFromNextLevel True if records are extracted from the next level.

Methods:

creataRecords() creates record from the nodes after computing their

score.

addNode (stNode,

previousNodeTracker)

Logs the presence of the type of HTMLElement in the

current level.

Parameter stNode: seedTreeNode

 previousNodeTracker: nodeTracker at previous level.

LeaveCurrentLevel Creates record and reinitializes the score and nodes

array.

computeCumulativeScore Computes the cumulative score for making record been

made.

Class : seedTreeNode

A node in the seed tree.

Constructor: seedTreeNode(node)

 23

Parameter: node – HTMLElement

Creates an instance of seedTreeNode of type of node. If node is null for root of the tree.

Attributes:

name Name of the type of the node

ontoScore Ontological score obtained for the node

node HTMLElement that instantiated the seed tree node

levelTrackerArray Array of level tracker and is used only if the current

node is the root node.

Methods:

addChild(stNode, stRoot) Adds a seed Tree node stNode as a child

Parameter : stNode – seedTreeNode

leave() Signals the traversal of the node is complete and hence

updates the levelTracker

Parameter stNode: seedTreeNode

 previousNodeTracker: nodeTracker at previous level.

Class: seedTree

Seed Tree created out of patterns in tree.

Constructor: seedTree(node)

Parameter: node – HTMLElement

Creates a seed Tree with node of type of HTMLElement node.

Attributes:

root Root of the tree

Methods:

addChild(node) Adds a seedTreeNode of type of HTMLElement node.

Parameter : node – HTMLElement

getRecordsLength Returns the length of records at the level

 24

getRecords() Extracts records from the level

Class: recordBoundaryTest

Extracts citation record boundaries and places an icon with an Open URL link before

them.

Constructor: recordBoudaryTest(d)

Parameter: d – HTMLDocument

Creates an instance of recordBoundaryTest that would extract records boundaries for the

HTMLDocument d

Attributes:

doc HTMLDocument

tagList Array that indicates types of tags.

regExps Regular Expressions for doing ontological Match on

heading tags.

Methods:

nextValidSiblingNodes() Returns array of nodes from which we have to create a

seed Tree and extract records

applyTest() Applies the record boundary test and makes required

changes in the DOM tree in case records are found.

Class: CitationParser

Parses citation record using templates (as in Paratools) and scores for each of the

template matched

Constructor: CitationParser (rec)

Parameter: rec– CitationRecord

Creates an instance of CitationParser that would match all the templates and give the

best-match template and finally the metadata

Attributes:

 25

templates Array that contains the citation styles

matches Array that contains the regExps for the tokens in the

templates

factors Array that contains the reliability score for each of the

tokens in the matches

Methods:

convertToRegExps(Templates) Substitutes and replaces the template tokens with the

regExps defined in matched

doMatch(rec,Templates,

bestMatch, bestOrig

Matches the rec with each of the substituted templates

and returns the bestmatch template

getReliability() Scores each template for reliability

getConcreteness() Scores each template for concreteness

extractMetaData(rec) Returns an Array containing the metadata of the given

record

getMetaData(rec) Called by extractMetaData which inturn handles

multiple authors and extracts the field boundaries

mapToOpenURL(rec) Creates a OpenURL link of the metadata

10. EVALUATION

 We have tested our current extension on 50 web pages. Most of these web pages

were home pages (specifically those containing resumes) of professors in Computer

Science field. At this stage the extension does not cater to other domains and requires to

be ontologically trained for other domains. The following table gives an account of our

evaluation.

 URL Extracted

records
Parsed

correctly
VT Article Linker

gives correct

OpenURL

1. http://people.cs.vt.edu/~gback/ � � �

2. http://www.nvc.cs.vt.edu/%7Ebohner/s

bohner-cv.htm

� � �

3. http://people.cs.vt.edu/%7Ebowman/ � � �

4. http://people.cs.vt.edu/%7Eirchen/ � � �

5. http://www.cs.vt.edu/info/people/vitae/

Egyhazy.html

� � �

6. http://www.teacherbridge.org/public/us

ers/dunlapd/Resume

� � �

7. http://frakes.cs.vt.edu/frakespubs.html � � �

8. http://fox.cs.vt.edu/cv.htm � � �

9. http://people.cs.vt.edu/~vchoi/ � � �

10. http://people.cs.vt.edu/%7Eedwards/ � � �

11. http://people.cs.vt.edu/%7Earthur/ � � �

12. http://europa.nvc.cs.vt.edu/%7Eathma � � �

 26

n/

13. http://people.cs.vt.edu/~barnette/ � � �

14. http://people.cs.vt.edu/%7Ekafura/ � � �

15. http://europa.nvc.cs.vt.edu/~ctlu/ � � �

16. http://people.cs.vt.edu/%7Eheath/vita/

cv_html/cv_html.html

� � �

17. http://people.cs.vt.edu/~onufriev/public

ations.html

� � �

18. http://www.cs.vt.edu/info/people/vitae/
Hartson.html

� � �

19. http://aero-comlab.stanford.edu/juanjo/ � � �

20. http://aero-
comlab.stanford.edu/jameson/publicatio

n_list.html

� � �

21. http://www.cse.buffalo.edu/faculty/mill
er/Biographical.htm

� � �

22. http://www.cse.buffalo.edu/faculty/sel

man/

� � �

23. http://www.cedar.buffalo.edu/~rohini/p

ublications.html

� � �

24. http://www.cse.buffalo.edu/%7Eshamb
hu/publications.htm

� � �

25. http://www.cse.buffalo.edu/faculty/mbe

al/papers.html

� � �

26. http://www.cse.psu.edu/~acharya/ � � �

27. http://www.cse.buffalo.edu/faculty/alph

once/Publications/

� � �

28. http://www.egr.msu.edu/~nrm/researc

h/pub.html

� � �

29. http://www.cse.buffalo.edu/~xwang8/ � � �

30. http://www.cs.sunysb.edu/people/facult
y/ArieKaufmanAB.html

� � �

31. http://www.cs.sunysb.edu/~rtjohnso/p

apers.html

� � �

32. http://www.cs.sunysb.edu/people/facult

y/XianfengGuAB.html

� � �

33. http://www.cs.sunysb.edu/people/facult
y/DimitrisSamarasAB.html

� � �

34. http://www.cs.sunysb.edu/people/facult

y/MichaelTashbookAB.html

� � �

35. http://www-

dsg.stanford.edu/Publications.html

� � �

36. http://www.cs.sunysb.edu/people/facult
y/AlexanderMohrAB.html

� � �

37. http://www.cs.purdue.edu/homes/li/pu

blications.html

� � �

38. http://www.cc.gatech.edu/~ammar/pby

.html

� � �

39. http://www.bell-
labs.com/user/rastogi/pub.html

� � �

40. http://blrc.edu.cn/blrcweb/publication.h

tm

� � �

 27

41. http://www.isr.umd.edu/~baras/ � � �

42. http://www.cs.virginia.edu/brochure/pr
ofs/batson.html

� � �

43. http://www.cs.umd.edu/%7Ebederson/

papers/

� � �

44. http://www.bell-labs.com/user/risbood/ � � �

45. http://www.cs.purdue.edu/homes/cmik

kels/monalisa/monalisa.html

� � �

46. http://www.cc.gatech.edu/~goodman/ � � �

47. http://www.cc.gatech.edu/%7Edellaert/ � � �

48. http://www.cc.gatech.edu/fac/Blair.Mac

Intyre/papers.html

� � �

49. http://www.cc.gatech.edu/~jpierce/ � � �

50. http://www.cs.washington.edu/research

/embedded.intro.html

� � �

11. EVALUATION RESULTS

 We found that we were able to find the correct record boundaries in most cases. If

the extension detects few of the records listed in the web page, we consider the record

boundary extraction to be successful. From the results till now, we have success-rate of

more than 80% for the citation sensing. For 70 % of web pages where record boundaries

were extracted successfully, the heuristics based parser was successful and parsed

correctly. Hence it was also able to provide the correct Open URL link. In few other

cases it was able to provide an appropriate Google Scholar link. This URL results in a

page that contains the Open URL link for the scholarly article (a feature that was already

implemented in the LibX extension by Dr. Godmar Back and Annette Bailey [23].

12. FUTURE WORK

 Though the prototype implementation demonstrates a working solution in the

browser environment, there is lot of scope for improving both the record boundary

detection and parsing. The following is a list of future improvements.

• There is scope for improving the parser to support variety of citation styles using

better heuristics. This will reduce the false negatives.

• Look-up dictionaries of authors and title keywords can be integrated into the

heuristic parser solution. The dictionaries are updated with author and title

contents each time OpenURL resolver successfully resolves to a cited document in

the library repository. This can improve the performance.

• Ontology should cater to different domains. The Ontological scoring can be

improved by comprehensively testing for various webpage’s that have different

citation formats. This will reduce false positives and false negatives.

• Another direction to improve the parsing is to explore the GLR parsing technique

• Server support for parsing citations with google scholar support is also a good

alternative to improve the accuracy of parsing.

 28

REFERENCES
1. Bergmark, D. 2000 Automatic Extraction of Reference Linking Information from

Online Documents. Technical Report. UMI Order Number: TR2000-1821.,

Cornell University

2. Bergmark, D. and Lagoze, C. 2001 An Architecture for Automatic Reference

Linking (Extended Version). Technical Report. UMI Order Number: TR2001-

1842., Cornell University.

3. Bergmark, D. and Lagoze, C. 2001 Reference Linking the Web''s Scholarly

Papers. Technical Report. UMI Order Number: TR2001-1835., Cornell University

4. Sergey Brin. Extracting patterns and relations from the world wide web. In

WebDB, Workshop at EDBT '98, 1998

5. C. Lee Giles, Kurt Bollacker, and Steve Lawrence CiteSeer: An automatic citation

indexing system. In Ian Witten, Rob Akscyn, and Frank M. Shipman III, editors,

Digital Libraries 98 - The Third ACM Conference on Digital Libraries, pages 89--

98, Pittsburgh, PA, June 23--26 1998. ACM Press

6. ParaTools: http://paracite.eprints.org/developers/

7. CrossRef: http://www.crossref.org/

8. Junfei Geng; Jun Yang; AUTOBIB: automatic extraction of bibliographic

information on the Web, Database Engineering and Applications Symposium,

2004. IDEAS '04. Proceedings. International 7-9 July 2004 Page(s):193 - 204

Digital Object Identifier 10.1109/IDEAS.2004.1319792

9. Min-Yuh Day; Tzong-Han Tsai; Cheng-Lung Sung; Cheng-Wei Lee; Shih-Hung

Wu; Chorng-Shyong Ong; Wen-Lian Hsu. A knowledge-based approach to

citation extraction. Information Reuse and Integration, Conf, 2005. IRI -2005

IEEE International Conference on. Aug. 15-17, 2005 Page(s): 50- 55

10. G.G. Chowdhury. Template mining for information extraction from digital

documents. Library Trends. 48(1), 1999, 181-207.

11. Masaru T (1987) An efficient augmented-context-free parsing algorithm. Comput.

Linguist. 13:31-46

12. Ted B, John C (1993) Generalized probabilistic LR parsing of natural language

(Corpora) with unification-based grammars. Comput. Linguist. 19:25-59

13. Inui Kentaro, Virach Sornlertlamvanich, Tanaka Hozumi and Tokunaga

Takenobu.1998. Probabilistic GLR parsing: a new formalization and its impact on

 29

parsing performance. In Journal of Natural Language Processing,

Vol.5.No.3,pages33-52.

14. Tobias R (2000) A context-sensitive model for probabilistic LR parsing of spoken

language with transformation-based postprocessing. In: Proceedings of the 18
th

conference on Computational linguistics - Volume 2. Association for

Computational Linguistics, Saarbrücken, Germany

15. Yong-Jae Kwak, So-Young Park, Young-Sook Hwang, Hoo-Jung Chung, Sang-

Zoo Lee and Hae-Chang Rim, "GLR Parser with Conditional Action

Model(CAM)," Proc. of the 5th Natural Language Processing Pacific Rim

Symposium, pp. 359-366, 2001.

16. Helen M, Po-Chui L, Kui X, Fuliang W (2002) GLR parsing with multiple

grammars for natural language queries. ACM Transactions on Asian Language

Information Processing (TALIP) 1:123-144

17. GLR Parser with Conditional Action Model using Surface Phrasal Types for

Korean Yong-Jae Kwak, So-Young Park, and Hae-Chang Rim NLP Lab., Dept.

of CSE, Korea

18. Alon L (1994) An integrated heuristic scheme for partial parse evaluation. In:

Proceedings of the 32nd annual meeting of the Association for Computational

Linguistics. Association for Computational Linguistics, Las Cruces, New Mexico

19. Embley DW, Jiang Y, Ng YK (1999) Record-boundary discovery in Web

documents. In: Proceedings of the 1999 ACM SIGMOD international conference

on management of data. ACM Press, Philadelphia, Pennsylvania, United States,

Pages: 467 - 478 , ISSN:0163-5808

20. Bing Liu, Robert Grossman, Yanhong Zhai. "Mining Data Records in Web

Pages." Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining (KDD-2003), Washington, DC, USA,

August 24 - 27, 2003.

21. Yanhong Zhai, and Bing Liu. "Web Data Extraction Based on Partial Tree

Alignment" To appear in Proceedings of the 14th international World Wide Web

conference (WWW-2005), May 10-14, 2005, in Chiba, Japan

22. Bing Liu and Yanhong Zhai. "NET - A System for Extracting Web Data from Flat

and Nested Data Records." Proceedings of 6th International Conference on Web

Information Systems Engineering (WISE-05), 2005

23. Libx: http://libx.org/

 30

 FURL ENTRIES

• Papers and presentations: OpCit project link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:49:38 GMT

• CPAN link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:49:11 GMT

• SFU Library - Citation Finder link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:47:48 GMT

• WebSPHINX: A Personal, Customizable Web Crawler link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:44:57 GMT

• Statistical Data Mining Tutorials link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:43:53 GMT

• File IO - MozillaZine Knowledge Base link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:42:55 GMT

• Packaging Firefox/Thunderbird Extensions link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:41:06 GMT

• Reference Linking in a Hybrid Library Environment Part 1: Frameworks for

 Linking link

 Rated: 3 in Citation Senser ; @ Fri, 4 Nov 2005 03:40:43 GMT

• CiteULike: A free online service to organise your academic papers link

 Rated: 4 in Citation Senser ; @ Fri, 4 Nov 2005 03:37:58 GMT

• AutoBib Project Homepage link

 Rated: 3 in Citation Senser; @ Fri, 4 Nov 2005 03:36:47 GMT

• Project related useful web links and bookmarks

o http://www.furl.net/members/gprasad6604

o http://www.furl.net/members/veenabs6604

o http://www.furl.net/members/ssmenon_6604

• Project related BLOG's

o http://diglib.portspaces.com/gprasad6604/blog3

 31

ACKNOWLEDGEMENTS

We express our sincere gratitude to Dr. Edward Fox for the guidance and suggestions he

has provided us during the course of this project. We are fortunate to work with our

client, Dr. Godmar Back on his novel idea - Citation Senser as a firefox extension. We

express our sincere gratitude to Dr. Godmar Back for guiding us throughout the project

and motivating us to explore new ideas and approaches to tackle this problem. And last

but not least we like to thank all our classmates for their support and help.

Client Contact Details:

Dr. Godmar Back

Assistant Professor

Dept. of Computer Science, Virginia Tech

gback@cs.vt.edu

Office: 2160A Torgersen Hall

Phone: 540-231-3046

